GNAS: A Greedy Neural Architecture Search Method for Multi-Attribute Learning

Siyu Huang¹, Xi Li¹, Zhi-Qi Cheng², Zhongfei Zhang¹, Alexander Hauptmann³ ¹Zhejiang University, ²Southwest Jiaotong University, ³Carnegie Mellon University

Problem Formulation Related Work Goal: To find the optimal tree-like neural network architecture AutoML: Towards the automation of machine **Multi-Attribute Learning** learning pipelines Smiling? YES • To make ML available for non-ML experts Male Big Nose, Pointy Nos • To accelerate research on ML Big Lips? YES veglasses, Narrow Eyes eavy Makeun, Oval Face, Pal _ipstick? YES Black Hair, Blond Hair, Brown Gray Hair, Hat, Necklace, Necktie NO Aale? **Neural Architecture Search (NAS)** NO gh Cheekbones, Rosy Chee hubby, Double Ch leavy To automate the architecture design of neural YES lakeup? Hand-crafted [Hand and Chellappa, AAAI'17] Feature Maps networks Oval Face? NO Convolutions/MLP **Difficult black-box optimization problem** • A huge number of candidate architectures ayer L-2 aver L-2 • Huge evaluation cost Laver N+1 RL Controller [Zoph and Le, ICLR'17] Learning-based [Lu et al., CVPR'17] - Training every architecture until convergence

GNAS Framework

GNAS Strategy 1: Global —> Layers

GNAS Strategy 3: Evaluate connections in together

Performance of GNAS

Market-1501 (%

13.81

13.32

11.84

13.16

11.51

11.94

11.42

11.37

11.17

Method	Mean Error (%)		Params	Test Speed	Adaptive?	
Methou	CelebA LFWA		(million)	(ms)	Adaptives	
LNets+ANet [14]	13	16	-	-	No	
Separate Task [22]	9.78	-	-	-	No	
MOON [22]	9.06	-	119.73	12.53	No	
Independent Group [6]	8.94	13.72	-	-	No	
MCNN [6]	8.74	13.73	-	-	No	
MCNN-AUX [6]	8.71	13.69	-	-	No	
VGG-16 Baseline [15]	8.56	-	134.41	12.60	No	
Low-rank Baseline [15]	9.12	-	4.52	6.07	No	
SOMP-thin-32 [15]	10.04	-	0.22	1.94	Yes	
SOMP-branch-64 [15]	8.74	-	4.99	5.77	Yes	
SOMP-joint-64 [15]	8.98	-	10.53	6.18	Yes	
PaW-subnet [5]	9.11	-	0.27	-	Yes	
PaW [5]	8.77	-	11	-	Yes	
GNAS-Shallow-Thin	8.70	13.84	1.57	0.33	Vec	
GNAS-Shallow-Wide	8.37	13.63	7.73	0.64	Yes	
GNAS-Deen-Thin	9.10	14 12	1.47	0.87	Yes	
GNAS-Deep-Wide	8.64	13.94	6.41	0.89	Yes	

Person Attribute

Method

Ped-Attribute-Net [14]

eparate Models [8]

APR [14]

qual-Weight [29

dapt-Weight [8]

Random-Wide

GNAS-Thir

GNAS-Wide

Method Attribute	LANet	Inde.	MCNN	M-AUX	PaW	GNAS
5'o Clock Shadow	9.00	6.06	5.59	5.49	5.36	5.24
Arched Eyebrows	21.00	16.84	16.45	16.58	16.99	15.75
Attractive	19.00	17.78	17.06	16.94	17.14	16.94
Bags Under Eyes	21.00	15.17	15.11	15.08	15.42	14.13
Bald	2.00	1.15	1.13	1.10	1.07	1.04
Bangs	5.00	4.01	3.96	3.95	4.07	3.80
Big Lips	32.00	29.20	28.80	28.53	28.54	28.21
Big Nose	22.00	15.53	15.50	15.47	16.37	14.90
Black Hair	12.00	10.59	10.13	10.22	10.16	9.76
Blond Hair	5.00	4.12	4.03	3.99	4.15	3.89
Blurry	16.00	3.93	3.92	3.83	3.89	3.58
Brown Hair	20.00	11.25	11.01	10.85	11.50	10.25
Bushy Eyebrows	10.00	7.13	7.20	7.16	7.38	7.01
Chubby	9.00	4.45	4.34	4.33	4.54	4.07
Double Chin	8.00	3.57	3.59	3.68	3.74	3.52
Eyeglasses	1.00	0.33	0.37	0.37	0.41	0.31
Goatee	5.00	2.87	2.70	2.76	2.62	2.41
Gray Hair	3.00	1.93	1.80	1.80	1.79	1.63
Heavy Makeup	10.00	9.05	8.63	8.45	8.47	8.18
High Cheekbones	12.00	12.66	12.45	12.42	12.56	11.95
Male	2.00	1.98	1.84	1.83	1.61	1.50
Mouth Slightly Open	8.00	6.01	6.26	6.26	5.95	5.84
Mustache	5.00	3.33	3.07	3.12	3.10	2.97
Narrow Eyes	19.00	12.78	12.84	12.77	12.44	12.34
No Beard	5.00	4.07	3.89	3.95	3.78	3.70
Oval Face	34.00	25.30	24.19	24.16	24.97	24.43
Pale Skin	9.00	2.93	2.99	2.95	2.92	2.76
Pointy Nose	28.00	22.53	22.53	22.53	22.65	21.76
Receding Hairline	11.00	6.59	6.19	6.19	6.56	6.06
Rosy Cheeks	10.00	4.98	4.87	4.84	4.93	4.99
Sideburns	4.00	2.23	2.18	2.15	2.36	2.04
Smiling	8.00	7.35	7.34	7.27	7.27	6.76
Straight Hair	27.00	17.38	16.61	16.42	16.48	15.23
Wavy Hair	20.00	16.76	16.08	16.09	15.93	15.48

Efficiency of GNAS

Training cost: 1 GPU * 1 day on LFWA (6k images), Market-1501 (17k images) 1 GPU * 2 days on CelebA (180k images)

2) Fewer model parameters 3) faster forward speed

GNAS architecture

1) Better performance

	10.00	2.05	9.00	2.57	10.07	9.04
Wearing Hat	1.00	1.03	0.96	0.95	0.98	0.88
Wearing Lipstick	7.00	6.20	6.05	5.89	5.76	5.59
Wearing Necklace	29.00	13.59	13.18	13.37	12.30	12.39
Wearing Necktie	7.00	3.29	3.47	3.49	3.15	3.24
Young	13.00	12.02	11.70	11.52	11.41	11.11
Ave.	12.67	8.94	8.74	8.71	8.77	8.37

Related attributes grouped hierarchically

1 5'o Clock Shadow 2 Arched Eyebrows 3 Attractive 4 Bags Under Eyes 5 Bald 6 Bangs 7 Big Lips 8 Big Nose 9 Black Hair 10 Blond Hair 11 Blurry 12 Brown Hair 13 Bushy Eyebrows 14 Chubby 15 Double Chin 16 Eyeglasses 17 Goatee 18 Gray Hair 19 Heavy Makeup 20 High Cheekbones 21 Male 22 Mouth Slightly Open 23 Mustache 24 Narrow Eyes 25 No Beard 26 Oval Face 27 Pale Skin 28 Pointy Nose 29 Receding Hairline 30 Rosy Cheeks 31 Sideburns 32 Smiling 33 Straight Hair 34 Wavy Hair 35 Wearing Earrings 36 Wearing Hat 37 Wearing Lipstick 38 Wearing Necklace 39 Wearing Necktie 40 Young

GNAS vs. Random Search

Results

1) GNAS has better performance and faster convergence speed 2) Better with larger validation batch

References

[1] B Zoph and QV Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

[2] H Pham et al. Efficient Neural Architecture Search via Parameter Sharing. In ICML, 2018.

[3] Hand et al. Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification. In AAAI, 2017.

[4] Lu et al. Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification. In CVPR, 2017.

Contact

Siyu Huang

siyuhuang@zju.edu.cn siyuhuang.github.io