GNAS: A Greedy Neural Architecture Search Method for Multi-Attribute Learning

Siyu Huang, Xi Li, Zhi-Qi Cheng, Zhongfei Zhang, Alexander Hauptmann

Carnegie Mellon University

ACM MM 2018

Background: Automated Machine Learning (AutoML)

Goal: Towards the automation of machine learning pipelines.

- to make ML available for non-ML experts
- to accelerate research on ML

Tasks

- data preparation
- model selection
- hyperparameter optimization

••••

• deep neural network architecture search

Background: Neural Architecture Search (NAS)

Goal: To automate the architecture design of neural networks.

Typical approaches

- random search
- Bayesian optimization
- evolutionary algorithm
- reinforcement learning

RL Controller [Zoph and Le, ICLR'17]

	Method	GPUs	Times (days)	Params (million)	Error (%)
	Budgeted Super Nets (Veniat & Denoyer, 2017)	_	_	_	9.21
	ConvFabrics (Saxena & Verbeek, 2016)	_	_	21.2	7.43
	Macro NAS + Q-Learning (Baker et al., 2017a)	10	8-10	11.2	6.92
	Net Transformation (Cai et al., 2018)	5	2	19.7	5.70
	FractalNet (Larsson et al., 2017)	—	—	38.6	4.60
	SMASH (Brock et al., 2018)	1	15	16.0	4.03
Huge computing cost!	NAS (Zoph & Le, 2017) NAS + more filters (Zoph & Le, 2017)	800 800	21-28 21-28	7.1 37.4	4.47 3.65

[Pham et al., ICML'18]

Our Work: Developing NAS to multi-attribute learning

Goal: To find the optimal tree-like neural network topology.

Formulation

$$\hat{G} = \underset{G}{\operatorname{arg\,max}} R(G)$$

 $= \underset{G}{\operatorname{arg\,max}} \frac{1}{N} \sum_{n=1}^{N} r_n(G)$

A difficult black-box optimization problem

- A huge number of candidate architectures
- Huge evaluation costs of candidate architectures
 - Training every candidate until convergence

Existing architecture design methods for attribute prediction

[Hand and Chellappa, AAAI'17]

Learning-based

Hand-crafted

Our Key Idea

Exploiting the nature of tree structure — Greedy NAS strategies

GNAS Strategy #1: Global —> Layers

$$\hat{A} = \left\{ \arg\max_{A^{(l)}} R\left(A^{(l)} \mid A^{(L)}, L \neq l\right), \text{ s.t. } \sum_{i,j} A^{(l)}_{i,j} = N \right\} \text{ for } l = 1, ..., M - 1$$

Architectures of the other layers are fixed.

GNAS Strategy #2: Layer —> Connections

To find the best-*N* connections within the *I*-th layer.

$$\arg\max_{A^{(l)}} R\left(A^{(l)} \mid A^{(L)}, L \neq l\right), \qquad \text{s.t.} \sum_{i,j} A^{(l)}_{i,j} = N \qquad (4)$$

$$= \arg\max_{A^{(l)}} \frac{1}{N} \sum_{n=1}^{N} r_n \left(A^{(l)} \mid A^{(L)}, L \neq l\right), \qquad \text{s.t.} \sum_{i,j} A^{(l)}_{i,j} = N$$

$$\simeq \left\{ \arg\max_{A^{(l)}} r_n \left(A^{(l)} \mid A^{(L)}, L \neq l\right), \qquad \text{s.t.} \sum_{i,j} A^{(l)}_{i,j} = 1 \right\} \text{ for } n = 1, ..., N$$

Number of candidate architectures within one layer:

$$B_l^{B_{l+1}} \twoheadrightarrow B_l \cdot B_{l+1}$$

To find the best-**1** connection w.r.t each attribute.

GNAS Strategy #3: Evaluate connections in together

$$B_l^{B_{l+1}} \twoheadrightarrow B_l \cdot B_{l+1} \twoheadrightarrow B_l$$

GNAS Strategy #4: Neural weight sharing [ENAS, ICML'18]

Efficiency of GNAS

Algorithm 1: Greedy neural architecture search (GNAS)

Input: Training set *D*_{train}, validation set *D*_{valid}, layer number *M*, block number *B*

Output: Neural network architecture *A*

1. Initialization

- Randomly initialize architecture *A* subject to Eq. 2;

- Randomly initialize neural network weights *W*;

2. Updating

```
- while not converged do

-for l=M-1 downto 1 do

- for b=1 to B_1 do
```

$$| (1) (1) (1, i = b)$$

 $\begin{array}{c} -A_{i,j}^{(i)} \leftarrow \left\{ 0, i \neq b \right\}; \\ - \operatorname{Train} W[A] \text{ on batches of } D_{\text{train}}; \\ - r(A) \leftarrow \operatorname{Evaluate} W[A] \text{ on batches of } D_{\text{valid}}; \\ - \text{ Update layer architecture } A^{(l)} \text{ based on } r \text{ by Eq. 6}; \end{array}$

Training cost:

1 GPU * 1 day on LFWA (6k images), Market-1501 (17k images)

1 GPU * 2 days on CelebA (180k images)

Advantages:

1) Reducing numerous candidate architectures

- 2) Accelerating training by weight sharing
- 3) Large search space
- 4) Non-parametric

Experiment #1: GNAS vs. Random search

Results

- 1) GNAS has better performance and faster convergence speed.
- 2) Larger validation batch size is better for both GNAS and random search.

Experiment #2: GNAS vs. Hand-crafted architectures Search space configuration

Layer Kernel	Shallow			Deep			
	Block	Cha	Channel		Channel		
	DIOCK	Thin	Wide	Block	Thin	Wide	
Conv-1	7×7	1	16	64	1	16	64
Conv-2	3×3	1	32	128	2	16	64
Conv-3	3×3	1	64	256	4	16	64
Conv-4	3×3	4	32	128	8	16	64
Conv-5	3×3	16	16	32	16	16	32
FC-1	-	N	64	128	N	64	128
FC-2	-	N	64	128	N	64	128
FC-3	-	N	2	2	\boldsymbol{N}	2	2

Shallow

Deep

Experiment #2: GNAS vs. Hand-crafted architectures

Results

Method	Mean Error (%)		Params	Test Speed	Adaptive?
	CelebA	LFWA	(million)	(ms)	Adaptive
LNets+ANet [14]	13	16	-	120	No
Separate Task [22]	9.78	-	-	-	No
MOON [22]	9.06	-	119.73	12.53	No
Independent Group [6]	8.94	13.72	-	-	No
MCNN [6]	8.74	13.73	5		No
MCNN-AUX [6]	8.71	13.69	-	-	No
VGG-16 Baseline [15]	8.56	-	134.41	12.60	No
Low-rank Baseline [15]	9.12	-	4.52	6.07	No
SOMP-thin-32 [15]	10.04	-	0.22	1.94	Yes
SOMP-branch-64 [15]	8.74	- 1	4.99	5.77	Yes
SOMP-joint-64 [15]	8.98	-	10.53	6.18	Yes
PaW-subnet [5]	9.11	<i>a</i> .)	0.27		Yes
PaW [5]	8.77	- 1	11	-	Yes
GNAS-Shallow-Thin	8 70	13.84	1 57	0.33	Yes
GNAS-Shallow-Wide	8.37	13.63	7.73	0.64	Yes
GNAS-Deep-Inin	9.10	14.12	1.4/	0.87	ies
GNAS-Deep-Wide	8.64	13.94	6.41	0.89	Yes

Facial attribute prediction

Person attribute prediction

Method	Market-1501 (%)		
Ped-Attribute-Net [14]	13.81		
Separate Models [8]	13.32		
APR [14]	11.84		
Equal-Weight [29]	13.16		
Adapt-Weight [8]	11.51		
Random-Thin	11.94		
Random-Wide	11.42		
GNAS-Thin	11.37		
GNAS-Wide	11.17		

GNAS architecture

- 1) Better performance
- 2) Fewer model parameters
- 3) Faster forward speed

Per-attribute performance

Attribute Method	LANet	Inde.	MCNN	M-AUX	PaW	GNAS
5'o Clock Shadow	9.00	6.06	5.59	5.49	5.36	5.24
Arched Eyebrows	21.00	16.84	16.45	16.58	16.99	15.75
Attractive	19.00	17.78	17.06	16.94	17.14	16.94
Bags Under Eyes	21.00	15.17	15.11	15.08	15.42	14.13
Bald	2.00	1.15	1.13	1.10	1.07	1.04
Bangs	5.00	4.01	3.96	3.95	4.07	3.80
Big Lips	32.00	29.20	28.80	28.53	28.54	28.21
Big Nose	22.00	15.53	15.50	15.47	16.37	14.90
Black Hair	12.00	10.59	10.13	10.22	10.16	9.76
Blond Hair	5.00	4.12	4.03	3.99	4.15	3.89
Blurry	16.00	3.93	3.92	3.83	3.89	3.58
Brown Hair	20.00	11.25	11.01	10.85	11.50	10.25
Bushy Eyebrows	10.00	7.13	7.20	7.16	7.38	7.01
Chubby	9.00	4.45	4.34	4.33	4.54	4.07
Double Chin	8.00	3.57	3.59	3.68	3.74	3.52
Eyeglasses	1.00	0.33	0.37	0.37	0.41	0.31
Goatee	5.00	2.87	2.70	2.76	2.62	2.41
Gray Hair	3.00	1.93	1.80	1.80	1.79	1.63
Heavy Makeup	10.00	9.05	8.63	8.45	8.47	8.18
High Cheekbones	12.00	12.66	12.45	12.42	12.56	11.9
Male	2.00	1.98	1.84	1.83	1.61	1.50
Mouth Slightly Open	8.00	6.01	6.26	6.26	5.95	5.84
Mustache	5.00	3.33	3.07	3.12	3.10	2.97
Narrow Eyes	19.00	12.78	12.84	12.77	12.44	12.3
No Beard	5.00	4.07	3.89	3.95	3.78	3.70
Oval Face	34.00	25.30	24.19	24.16	24.97	24.43
Pale Skin	9.00	2.93	2.99	2.95	2.92	2.76
Pointy Nose	28.00	22.53	22.53	22.53	22.65	21.7
Receding Hairline	11.00	6.59	6.19	6.19	6.56	6.06
Rosy Cheeks	10.00	4.98	4.87	4.84	4.93	4.99
Sideburns	4.00	2.23	2.18	2.15	2.36	2.04
Smiling	8.00	7.35	7.34	7.27	7.27	6.76
Straight Hair	27.00	17.38	16.61	16.42	16.48	15.2
Wavy Hair	20.00	16.76	16.08	16.09	15.93	15.4
Wearing Earrings	18.00	9.65	9.68	9.57	10.07	9.02
Wearing Hat	1.00	1.03	0.96	0.95	0.98	0.88
Wearing Lipstick	7.00	6.20	6.05	5.89	5.76	5.59
Wearing Necklace	29.00	13.59	13.18	13.37	12.30	12.39
Wearing Necktie	7.00	3.29	3.47	3.49	3.15	3.24
Young	13.00	12.02	11.70	11.52	11.41	11.1
Ave.	12.67	8.94	8.74	8.71	8.77	8.37

Experiment #3: Architecture discovered by GNAS

Related attributes are grouped together

1 5'o Clock Shadow 2 Arched Eyebrows 3 Attractive 4 Bags Under Eyes 5 Bald 6 Bangs 7 Big Lips 8 Big Nose 9 Black Hair 10 Blond Hair 11 Blurry 12 Brown Hair 13 Bushy Eyebrows 14 Chubby 15 Double Chin 16 Eyeglasses 17 Goatee 18 Gray Hair 19 Heavy Makeup 20 High Cheekbones 21 Male 22 Mouth Slightly Open 23 Mustache 24 Narrow Eyes 25 No Beard 26 Oval Face 27 Pale Skin 28 Pointy Nose 29 Receding Hairline 30 Rosy Cheeks 31 Sideburns 32 Smiling 33 Straight Hair 34 Wavy Hair 35 Wearing Earrings 36 Wearing Hat 37 Wearing Lipstick 38 Wearing Necklace 39 Wearing Necktie 40 Young

Take-Home Messages

- Searching for tree-like NN topology
- Improving search efficiency by multiple greedy strategies

References

[1] B Zoph and QV Le. Neural architecture search with reinforcement learning. In *ICLR*, 2017.

[2] H Pham et al. Efficient Neural Architecture Search via Parameter Sharing. In *ICML*, 2018.

[3] Hand et al. Attributes for Improved Attributes: A Multi-Task Network Utilizing Implicit and Explicit Relationships for Facial Attribute Classification. In *AAAI*, 2017.

[4] Lu et al. Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification. In *CVPR*, 2017.

Contact

Siyu Huang

siyuhuang@zju.edu.cn siyuhuang.github.io