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Abstract— While deep learning succeeds in a wide range of
tasks, it highly depends on the massive collection of annotated
data which is expensive and time-consuming. To lower the
cost of data annotation, active learning has been proposed to
interactively query an oracle to annotate a small proportion of
informative samples in an unlabeled dataset. Inspired by the fact
that the samples with higher loss are usually more informative
to the model than the samples with lower loss, in this article
we present a novel deep active learning approach that queries
the oracle for data annotation when the unlabeled sample is
believed to incorporate high loss. The core of our approach is a
measurement temporal output discrepancy (TOD) that estimates
the sample loss by evaluating the discrepancy of outputs given
by models at different optimization steps. Our theoretical inves-
tigation shows that TOD lower-bounds the accumulated sample
loss thus it can be used to select informative unlabeled samples.
On basis of TOD, we further develop an effective unlabeled
data sampling strategy as well as an unsupervised learning
criterion for active learning. Due to the simplicity of TOD,
our methods are efficient, flexible, and task-agnostic. Extensive
experimental results demonstrate that our approach achieves
superior performances than the state-of-the-art active learning
methods on image classification and semantic segmentation tasks.
In addition, we show that TOD can be utilized to select the best
model of potentially the highest testing accuracy from a pool of
candidate models.

Index Terms— Active learning, loss estimation, model selection,
semisupervised learning, temporal consistency regularization.

I. INTRODUCTION

LARGE-SCALE annotated datasets are indispensable and
critical to the success of modern deep learning models.

Since the annotated data are often highly expensive to obtain,
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learning techniques including unsupervised learning [1], semi-
supervised learning [2], and weakly supervised learning [3]
have been widely explored to alleviate the dilemma. In this
article, we focus on active learning [4] which aims to selec-
tively annotate unlabeled data with limited budgets while
resulting in high-performance models.

In existing literature of active learning, two mainstream
approaches have been studied, namely the diversity-aware
approach and the uncertainty-aware approach. The diversity-
aware approach [5] aims to pick out diverse samples to
represent the distribution of a dataset. It works well on
low-dimensional data and classifier with a small number of
classes [6]. The uncertainty-aware approach [7], [8] aims to
pick out the most uncertain samples based on the current
model. However, the uncertainty heuristics, such as distance
to decision boundary [9] and entropy of posterior probabil-
ities [10], are often task-specific and need to be specifically
designed for individual tasks such as image classification [11],
object detection [12], and semantic segmentation [13].

In this article, we consider that the samples with higher
loss would be more informative than the ones with lower
loss. Specifically in supervised learning settings, when samples
are correctly labeled, the averaged loss function over all
samples should be gradually minimized during the learning
procedure. Moreover, in every iteration the training model
would backward propagated error according to the loss of
every sample [14], while the sample with high loss usually
brings informative updates to the parameters of the training
model [15]. In this work, we extend these evidences to
active learning problems and propose a simple yet effective
loss estimator temporal output discrepancy (TOD), which can
measure the potential loss of a sample only relied on the
training model, when the ground-truth label of the sample is
not available. Specifically, TOD computes the discrepancy of
outputs given by models at different optimization steps, and a
higher discrepancy corresponds to a higher sample loss. Our
theoretical investigation shows that TOD well measures the
sample loss.

On basis of TOD, we propose a deep active learning
framework that leverages a novel unlabeled data sampling
strategy for data annotation in conjunction with a semisuper-
vised training scheme to boost the task model performance
with unlabeled data. Specifically, the active learning procedure
can be split into a sequence of training cycles starting with
a small number of labeled samples. By the end of every
training cycle, our data sampling strategy estimates cyclic
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output discrepancy (COD), which is a variant of TOD, for
every sample in the unlabeled pool and selects the unlabeled
samples with the largest COD for data annotation. The newly
annotated samples are added to the labeled pool for model
training in the next cycles. The task learning objective is
augmented with a regularization term derived from TOD, so as
to improve the performance of active learning with the aid of
the unlabeled samples. Compared with the existing deep active
learning algorithms, our approach is more efficient, more
flexible, and easier to implement, since it does not introduce
extra learnable models such as the loss prediction module [16]
or the adversarial network [17], [18] for uncertainty estimation.

In addition to active learning task, we also study the model
selection task, where the goal is to select the models of
superior performances from a pool of well-trained models.
Although it is a widely adopted manner that the trained models
are evaluated on the validation set then the models of the
best performance are picked out, there would be a nontrivial
domain gap between the validation set and test set. Directly
evaluating models on the unlabeled test set1 would be an
effective solution to alleviate this gap when the unlabeled test
set is accessible. In this work, we show that the proposed loss
measure TOD can also be used to pick out the models of
potentially high testing accuracy.

In the experiments, our active learning approach shows
superior performances in comparison with the state-of-the-
art baselines on various image classification and semantic
segmentation datasets. Extensive ablation studies demonstrate
that our proposed TOD can well estimate the sample loss
and benefit both the active data sampling and the task model
learning.

The contributions of this article are summarized as follows.
1) This article proposes a simple yet effective loss measure

TOD. Both theoretical and empirical studies validate the
efficacy of TOD.

2) This article presents a novel deep active learning
method, which includes a TOD-based active sampling
strategy and a semisupervised learning scheme.

3) This article further presents a TOD-based model selec-
tion algorithm to address both model-level and sample-
level model selection tasks.

4) Extensive active learning experiments on image classi-
fication and semantic segmentation tasks evaluate the
effectiveness of the proposed methods.

II. RELATED WORK

A. Active Learning

Active learning aims to incrementally annotate samples that
result in high model performance and low annotation cost
[4], [19]–[21]. Active learning has been studied for decades
of years and the existing methods can be generally grouped
into two categories: the query-synthesizing approach and the
query-acquiring approach. The query-synthesizing approach
[22], [23] employs generative models to synthesize new infor-
mative samples. For instance, adversarial sampling for active

1The unlabeled test set is visible to the machine learning algorithm devel-
opers under some circumstances, e.g., Kaggle competitions.

learning (ASAL) [24] uses generative adversarial networks
(GANs) [25] to generate high-entropy samples. In this article,
we focus on the query-acquiring active learning which devel-
ops effective data sampling strategies to pick out the most
informative samples from the unlabeled data pool.

The query-acquiring methods can be categorized as
diversity-aware and uncertainty-aware methods. The diversity-
aware methods [5], [26] select a set of diverse samples that
best represents the dataset distribution. A typical diversity-
aware method is the core-set selection [6] based on the core-
set distance of intermediate features. It is theoretically and
empirically proven to work well with a small scale of classes
and data dimensions.

The uncertainty-aware methods [7], [27]–[30] actively select
the most uncertain samples in the context of the training
model. A wide variety of related methods has been pro-
posed, such as Monte Carlo estimation of expected error
reduction [31], distance to the decision boundary [9], [32],
margin between posterior probabilities [33], [34], and entropy
of posterior probabilities [10], [11], [35].

The diversity-aware and uncertainty-aware approaches are
complementary to each other. For instance, the uncertainty-
aware active learning methods do not take sample redundancy
into consideration, such that similar high-uncertainty samples
would be picked out in an active learning cycle. Therefore,
many hybrid methods [36]–[45] have been proposed for
specific tasks. In more recent literature, adversarial active
learning [17], [18], [46] is introduced to learn an adversarial
discriminator to distinguish the labeled and unlabeled data.

Compared to the existing works in active learning, our
method falls into the category of uncertainty-aware active
learning by directly utilizing the task model for uncertainty
estimation. The relevant works include the ones which utilize
the expected gradient length [47] or output changes on input
perturbation [48], [49] for uncertainty estimation. In the realm
of loss estimation, Yoo and Kweon [16] proposed to learn a
loss prediction module to estimate the loss of unlabeled sam-
ples. However, different from [16], our method only relies on
the task model without learning extra models such as the loss
prediction module [16] or the adversarial network [17], [18].
Our method is very efficient since its computation only
includes the feed-forward inference of the task model. In addi-
tion, we provide a theoretical interpretation for our method
by connecting it to the lower bound of the accumulated
sample loss.

B. Semisupervised Learning

This work is also related to semisupervised learning which
seeks to learn from both labeled and unlabeled data since we
also develop the proposed loss estimation method to improve
the learning of task model using unlabeled data. There has
been a wide variety of semisupervised learning approaches
such as transductive model [50], graph-based method [51],
and generative model [52]. We refer to [53] for an up-to-date
overview.

More recently, several semisupervised methods includ-
ing �-model [54] and virtual adversarial training [55]
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apply consistency regularization to the posterior distributions
of perturbed inputs. Further improvements including Mean
Teacher [56] and Temporal Ensembling [54] apply the consis-
tency regularization on models at different time steps. How-
ever, the consistency regularization has been seldom exploited
for active learning.

Compared to the existing efforts in semisupervised learn-
ing for neural networks, our proposed loss measure TOD
could be considered as an alternative solution of consistency
regularization. TOD can be well adapted to active learning
by developing a novel active sampling method COD. COD
only relies on the models learned after every active learning
cycle. In contrast, the existing temporal consistency-based
uncertainty measurements often require access to a number
of previous model states. For instance, the computing of
Mean Teacher [56] and Temporal Ensembling [54] require the
historical model parameters and the historical model outputs,
respectively.

On the other hand, there have not been sufficient theoretical
interpretations for the success of consistency regularization.
Athiwaratkun et al. [57] reveals that the consistency regu-
larization on perturbed inputs is an unbiased estimator for
the norm of the Jacobian of the network. However, there
is still a lack of interpretations on the temporal consistency
regularization. In this article, we show that the temporal
consistency regularization can be connected to the lower
bound of the accumulated sample loss. Thus, the temporal
consistency regularization is a theoretically effective solution
to loss estimation as well as semisupervised learning.

III. TEMPORAL OUTPUT DISCREPANCY

Measuring the sample loss on a given neural network f ,
when the label of the sample is unavailable, is a key challenge
for many learning problems, including active learning
[29], [33], [35], continual learning [30], and self-supervised
learning [54], [56]. In this work, we present TOD, which
estimates the sample loss based on the discrepancy of outputs
of a neural network at different learning iterations. Given a
sample x ∈ R

d , we have TOD D{T }t : Rd → R

D{T }t (x)
def= ‖ f (x;wt+T )− f (x;wt)‖. (1)

D{T }t (x) characterizes the distance2 between outputs of model
f with parameters wt+T and wt obtained in the (t + T )th
and t th gradient descend step during learning (e.g., T > 0),
respectively.

In the following, we show that a larger D{T }t (x) indicates
a larger sample loss3 Lt (x) = (1/2)(y − f (x;wt))

2, where
y ∈ R is the label corresponding to sample x . We first give
the upper bound of one-step output discrepancy D{1}t (x).

Theorem 1: With an appropriate setting of learning rate η

D{1}t (x) ≤ η
√

2Lt (x)‖∇w f (x;wt)‖2. (2)

2For brevity, ‖·‖ denotes the L2 norm ‖·‖2 in this article.
3Here we take Euclidean loss as an example. The cross-entropy (CE) loss

has similar results.

Fig. 1. ‖∇w f ‖2 versus the active learning cycle. The dark lines denote
‖∇w f ‖2 averaged over the training (i.e., labeled and unlabeled) pool. The
blue lines denote average ‖∇w f ‖2 after every active learning cycle.

The proofs of Theorem 1 and the following corollaries
can be found in the Appendix. From Theorem 1, the upper
bound of T -step output discrepancy D{T }t (x) can be easily
deduced.

Corollary 1: With an appropriate setting of learning rate η

D{T }t (x) ≤ √2η

t+T−1∑
τ=t

(√
Lτ (x)‖∇w f (x;wτ)‖2

)
. (3)

Corollary 3 preliminarily connects T -step output discrep-
ancy D{T }t (x) to sample loss L(x). However, it is almost
infeasible to compute ‖∇w f (x;wτ)‖ on all τ . Fortunately,
‖∇w f ‖ is approximately a constant under the context of neural
networks, as discussed in [59] and [60].

Remark 1: For a linear layer φ(x;W ) with rectified linear
unit (ReLU) activation, the Lipschitz constant L(W ) ≤ ‖x‖.

Since sample x is drawn from a distribution X , we assume
‖x‖ is a constant so that f is Lipschitz-continuous over
w. Thus, we let ‖∇w f ‖2 be upper-bounded by a constant
C . Empirical results on image classification benchmarks
including Cifar-10 and Cifar-100 also support this assump-
tion. As shown in Fig. 1, the dark lines are the averaged
‖∇w f ‖2 over the training set. The blue lines denote the aver-
aged ‖∇w f ‖2 after every active learning cycle. ‖∇w f ‖2 has
a small variance over samples and it is nearly constant across
every active learning cycle.

With ‖∇w f ‖2 ≤ C , we rewrite Corollary 3 to connect
D{T }t (x) with the accumulated loss of sample x .

Corollary 2: With appropriate settings of a learning rate η
and a constant C

D{T }t (x) ≤ √2TηC

√√√√t+T−1∑
τ=t

Lτ (x). (4)

Corollary 4 shows that ‖ f (x;wt+T )− f (x;wt)‖ is a lower
bound of the square root of accumulated loss L during T gradi-
ent descend steps. Thus, when T is fixed, e.g., a certain number
of iterations of neural network training, TOD can effectively
estimate the loss of sample x . Note that the preassumptions
of Theorem 1 and its corollaries limit the learning rate η not
to be too large to dissatisfy the Taylor expansion used in our
proofs. In empirical study, we find that the commonly used
learning rates, e.g., η = 0.1 or smaller, work well.
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Fig. 2. COD-based unlabeled data sampling strategy for active learning. Data samples with the largest COD are collected from the unlabeled pool. The
collected samples are annotated by an oracle and added to the labeled pool.

IV. SEMISUPERVISED ACTIVE LEARNING

A. Problem Formulation

We first formulate the standard active learning task as
follows. Let (xS, yS) denote a sample pair drawn from a set of
labeled data (X S, YS), where X S is the data points and YS is the
labels. Let xU denote an unlabeled sample drawn from a larger
unlabeled data pool XU , i.e., the labels YU corresponding to
XU cannot be observed. In an active learning cycle c, the
active learning algorithm selects a fixed budget of samples
from the unlabeled pool XU and the selected samples will be
annotated by an oracle. The budget size b is usually much
smaller than |XU |, the size of the unlabeled pool. The goal
of active learning is to select the most informative unlabeled
samples for annotation, so as to minimize the expected loss
of a task model f : X → Y .

We next present the use of TOD in a semisupervised active
learning framework. An active learning algorithm generally
consists of two components: 1) an unlabeled data sampling
strategy and 2) the learning of a task model. We adapt TOD to
these two components, respectively. For component 1), we pro-
pose COD, a new criterion to select unlabeled samples with
the largest estimated loss for annotation. For component 2),
we develop a TOD-based unsupervised loss term to improve
the performance of task model. In the following, we formulate
the active learning problem and discuss the details of the two
components.

B. Cyclic Output Discrepancy

In (4), our proposed TOD characterizes a lower bound of
the loss function for supervised learning. Here, we introduce
a variant of TOD, i.e., COD, for active selection of unlabeled
samples. COD estimates the sample uncertainty by measuring
the difference of model outputs between two consecutive
active learning cycles

Dcyclic(x |wc, wc−1) = ‖ f (x;wc)− f (x;wc−1)‖ (5)

where model parameters wc and wc−1 are obtained after the
cth and (c − 1)th active learning cycle, respectively.

Fig. 2 illustrates the procedure of COD-based unlabeled data
sampling. Given COD for every sample in unlabeled pool XU ,
our strategy selects b samples with the largest COD from XU .
Then, the strategy queries human oracles for annotating the
selected samples. The newly annotated data is added to labeled
pool for the next active learning cycle. In the first active
learning cycle (i.e., c = 1), the model f is trained with a
random set of labeled data, then COD is computed based on

Fig. 3. Consistency of COD and the real task loss. We show COD and
real loss averaged over the unlabeled samples versus percentage of labeled
images, under active learning setting.

the initial model and the model learned after the first cycle.
For c ≥ 2, we compute COD Dcyclic(x |wc, wc−1) for active
sample selection systematically.

Minimax Optimization of COD: As discussed in
Corollary 4, COD-based data sampling strategy can find
samples of large loss in unlabeled pool, so as to minimize
the expected loss of model f through further training the
task model in the next cycle. Fig. 3 preliminarily verifies
the consistency between COD and the real loss, where
COD shows a similar trend with the real loss and they are
both decreasing along with the active learning progress.
Instead of minimizing the TOD directly (i.e., min-min
optimization which may not be good), COD develops TOD
as the criterion of sample selection in active learning, where
samples with the maximal TOD are picked up (e.g., max-min
strategies). When considering labels of samples with potential
losses as information gain, our strategy actually maximizes
the minimum gain in active learning.

C. Semisupervised Task Learning

As suggested by Corollary 4, TOD measures the accumu-
lated sample loss, and thus it is natural to employ TOD as an
unsupervised criterion to improve the learning of model f
using the unlabeled data. However, directly applying TOD
to unsupervised training with the baseline model obtained at
the last cycle c − 1 may lead to an unstable training, due to
the following aspects: 1) the iteration interval between current
model and baseline model (i.e., T in Corollary 4) is no longer
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Fig. 4. Semisupervised task learning scheme. For labeled data, the task
model is trained with the task loss. For unlabeled data, the task model is
trained to minimize the distance between outputs of the task model and the
baseline model.

fixed during model training, thus the loss measurement would
be inaccurate and 2) the baseline model only depends on a
single historical model state so that it may suffer from a large
variance in loss measurement.

To address the above issues, we exploit a Mean Teacher [56]
to memorize model parameters over the long-term training
procedure. The parameters w̃ of the baseline model are the
exponential moving average (EMA) of the historical parame-
ters, as

w̃← α · w̃ + (1− α) ·w (6)

where w is the parameters of the current model and α is
the EMA decay rate. We propose an unsupervised criterion
that minimizes the L2 loss between the current model and the
baseline model. In the cth cycle, with the unlabeled pool Xc

U ,
the unsupervised criterion is

Lc
U (w) = 1

|Xc
U |

∑
xU ∈X c

U

‖ f (xU ;w)− f (xU ; w̃)‖2. (7)

We next present the semisupervised task learning scheme.
As illustrated in Fig. 4, for labeled data, we optimize the
supervised task objective. Here, we take the CE loss for image
classification as an example. In the cth cycle, given the labeled
set (Xc

S, Y c
S ) in the cycle, the supervised loss is

Lc
S(w) = 1∣∣Xc

S

∣∣
∑

(xS ,yS)∈
(

X c
S ,Y c

S

) CE[ f (xS;w), yS]. (8)

Note that the labeled pool (Xc
S, Y c

S ) will be enlarged per active
learning cycle. Within an active learning cycle, the labeled
pool remains unchanged.

By integrating the supervised task objective and the unsu-
pervised loss, we formulate the overall loss function that
evolves with the cycle c, as

Lc
overall(w) = Lc

S(w)+ λ · Lc
U (w) (9)

where λ is a trade-off weight to balance the supervised and
unsupervised loss terms. In our experiments, λ is set to
0.05 and the EMA decay rate α is set to 0.999. See the
Appendix for more details.

V. TEST DATA-AWARE MODEL SELECTION

A. Problem Formulation

In addition to active learning which selects samples of high
losses from the unlabeled pool, we further introduce another
application of TOD, i.e., test data-aware model selection,
which aims at selecting models of potentially high testing
accuracy from a pool of candidate models.

In general, the machine learning algorithms split the data
into three parts: the training set, the validation set, and
the test set. The training set is used to train the machine
learning models. The validation set is used to select the
algorithms, models, and hyperparameters after model training.
The test set is unseen during training, and it is used to
evaluate the final model performance. However, this model
selection paradigm may fail when there is a nontrivial gap
between the training/validation sets and the test set [61], [62].
Directly evaluating the models on the unlabeled test set
becomes an effective alternative solution when test set is
available. The uncertainty-aware [10], [33], [35] and the loss
estimation-aware (e.g., LL4AL [16] and TOD) active learning
methods are able to estimate the uncertainty/loss of the test
data, which is a surrogate criterion of the testing accuracy.
Thus, these methods can be utilized for test data-aware model
selection. The problem can be formulated as follows. Given
a neural network model f with several independently trained
parameters w(1), w(2), . . . , w(N), the goal is to estimate the
relative performance of these parameters on the unlabeled test
set X test.

B. Method

According to Corollary 4, TOD is a lower bound of the
accumulated sample loss L. Thus, the task of test accuracy
prediction is relaxed to the estimation of its lower bound, i.e.,
the average TOD of f (w(i)) on test set X test. We have

D(i)← 1

|X test|
∑

x∈X test

‖ f (x;w(i))− f (x; w̃(i))‖2 (10)

where w̃(i) is the baseline parameter corresponding to the
trained parameter w(i). It is set as a certain previous parameter
state during model training. In practice, we find that one
optimization epoch between w̃(i) and w(i) works well for
model selection. More empirical studies on the optimization
iteration intervals can be found in Section VI-E. Although
our algorithms needs access to the previous model checkpoint,
we believe it might not be a heavy burden for users who pre-
pare to use our algorithm to store a previous model checkpoint
during training.

We illustrate the TOD-based model selection method in
Algorithm 1. For each parameter w(i) of the candidate para-
meter pool, we compute the average TOD D(i) over the test
set X test. A smaller D(i) indicates a smaller test loss, i.e.,
a higher test accuracy. Finally, the sorting index of D(i) is a
ranking list of the parameters w(i) which can be used for model
selection.
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Algorithm 1 TOD-Based Model Selection Method
Input: unlabeled test set X test

neural network model f
model weights w(1), w(2), . . . , w(N)

baseline weights w̃(1), w̃(2), . . . , w̃(N)

Output: model ranking list r
1: for i = 1, 2, . . . , N do
2: D(i)← 1

|X test|
∑

x∈X test
‖ f (x;w(i))− f (x; w̃(i))‖2;

3: end for
4: index r ← sort D in an ascending order;
5: return r

VI. EXPERIMENTS

We conduct extensive experimental studies to evaluate the
proposed active learning approach on two computer vision
tasks, image classification, and semantic segmentation, using
seven benchmark datasets. The results are reported over three
runs with different initial network weights and labeled pools.
We implement the methods using PyTorch framework [63].
See the Appendix for more details.

A. Efficacy of TOD as Loss Measure

This work proposes TOD to estimate the loss of an unla-
beled sample. Fig. 3 has evaluated the relations between
TOD and sample loss as discussed in Theorem 1 and Corol-
lary 4, suggesting that the average COD and average loss
have a consistent trend along with active learning cycles.
To further verify the effectiveness of TOD for loss estimation,
we study the average loss of unlabeled samples by sorting
their COD values. Fig. 5 shows that the larger COD val-
ues of samples indicate the higher losses of samples, and,
this observation is consistent across all the active learning
cycles.

In Fig. 6, we compare the loss estimation performance
of a learned loss prediction model (LL4AL) [16] and COD.
We investigate how many samples of the highest losses can
be picked out by using different methods. Fig. 6 shows that
COD performs significantly better than LL4AL, as COD is
able to pick out more high-loss samples under all the sampling
settings. Figs. 3, 5, and 6 demonstrate that COD is an effective
loss measure as well as a feasible criterion for active data
sampling.

Fig. 7 shows the loss estimation performances of COD
using different number of GD steps. Regarding the number of
GD steps in COD, we conjecture there is a tradeoff between
variance and bias: fewer GD steps indicate a more unbiased
loss estimation with respect to current model, while more GD
steps result in a smaller estimation variance. Fig. 7 shows that
more GD steps generally lead to a better loss estimation perfor-
mance especially when there are fewer sampling images. For
SVHN dataset, 200-epoch COD and 50-epoch COD perform
worse than the other methods when there are more sampling
images. One possible cause is that the task model of SVHN
has a more severe overfitting issue compared to those of other
datasets, such that more GD steps may not significantly reduce

Fig. 5. Average real losses of unlabeled samples in a descending order of
COD values. For instance, “0%–5%” denotes the 5% unlabeled samples which
have the largest COD values, and so on.

Fig. 6. Performance of loss estimation using a learned loss prediction model
(LL4AL) [16] and the proposed COD method. We show the proportion of
sampled images which have the highest real losses versus the proportion of
sampling images.

Fig. 7. Effects of number of GD steps used in COD.

the estimation variance, but introducing more biases into
estimation to hurt the performance. To achieve a consistency
between datasets, in this article, we adopt 200 training epochs,
i.e., one active cycle, as the gap of COD.

B. Active Learning for Image Classification

1) Experimental Setup: We evaluate active learning meth-
ods on four benchmark image classification datasets including
Cifar-10 [64], Cifar-100 [64], Fashion-Mnist [65], SVHN [66],
Caltech-101 [67], and STL-10 [68]. Following the conven-
tional practices in deep active learning [16], [17], we employ
ResNet-18 [69] as the image classification model. We com-
pare our active learning approach against the state-of-the-art
methods including Core/Uncertain GCN [70], SRAAL [18],
TA-VAAl [71], VAAL [17], LL4AL [16], Core-set [6],
and MC-Dropout [28]. In addition, the random selection
of unlabeled data (“Random”) and the model trained on
the full training set (“Full Training”) are also included as
baselines.
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Fig. 8. Active learning results of image classification on six benchmark datasets.

2) Results: Fig. 8 shows image classification performances
of different active learning methods. Our method outperforms
all the other methods on the benchmark datasets. Additionally,
we have the following observations.

1) Our method consistently performs better than the other
methods with respect to the cycles. This is a desired
property for a successful active learning method, since
the labeling budget may vary for different tasks in
real-world applications. For instance, one may only
be able to annotate 20% instead of 40% of all the
data.

2) Our method shows robust performances on difficult
datasets such as Cifar-100 and Caltech-101. Both
datasets include much more classes than Cifar-10, and
Caltech-101 includes images of much higher resolution
(i.e., 300 × 200). These difficult datasets bring more
challenges to active learning, and the superior perfor-
mances on these datasets demonstrate the robustness of
our method.

3) On Cifar-10 and SVHN datasets which have many
redundant data samples, the proposed method shows
promising results compared to the diversity-aware
methods including CoreGCN [70] and Core-Set [6]
although it does not consider the diversity of selected
samples.

4) The performance curves of our method are relatively
smooth compared with the other methods. A smooth
curve means there are consistent performance improve-
ments from cycle to cycle, indicating that our sampling
strategy can take informative data from the unlabeled
pool.

5) In later cycles, our method shows a relatively
larger accuracy improvement. We conjecture this is
due to the utilization of unlabeled data in model
training.

6) Our method uses 40% training samples to outper-
form the full training on Cifar-10 and SVHN, e.g.,
94.5% versus 93.1% on Cifar-10. This interesting find-
ing is in accord with the observations discussed in
previous literature [72] that some data in the original
dataset might be unnecessary or harmful to model
training.

Table I compares different active learning methods, i.e.,
the state-of-the-art algorithms and the proposed methods,
for image classification on 40% training labeled data. Both
semisupervised task learning and active data selection strat-
egy contributes to performance improvement, while, active
data selection results in a more significant improvement than
semisupervised task learning. We also note that the pro-
posed method can outperform existing algorithms without
semisupervised task learning (see “Base + Active” in
Table I).

To study the robustness of active learning methods against
label noise, we further conduct noisy active learning exper-
iments on Cifar-10 and Cifar-100. We randomly perturb the
groundtruth labels of training set with a probability of 20%.
The results are shown in Fig. 9. Our COD outperforms LL4AL
and random baseline on most of the learning cycles, indicating
that COD enables a better model robustness to noisy labeling.
In Fig. 8, several methods approach or even beat full training
on standard active learning. However, all the methods cannot
outperform full training on noisy active learning. It indicates
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TABLE I

ACTIVE LEARNING PERFORMANCES ON 40% LABELED DATA. “BASE”: STANDARD TASK MODEL TRAINING WITHOUT ACTIVE DATA SELECTION.
“SEMI”: THE PROPOSED SEMISUPERVISED TASK LEARNING. “ACTIVE”: THE PROPOSED ACTIVE DATA SELECTION STRATEGY

Fig. 9. Noisy active learning results. The labels of training data are randomly
perturbed with a probability of 20%.

that more training data can help model training when there are
more noisy labels.

C. Active Learning for Semantic Segmentation

1) Experimental Setup: To validate the active learning
performance on more complex and large-scale scenarios,
we study the semantic segmentation task with the Cityscapes
dataset [73] which is a large-scale driving video dataset
collected from urban street scenes. Semantic segmenta-
tion addresses the pixel-level classification task and its
annotation cost is much higher. Following the settings in
[17] and [18], we employ the 22-layer dilated residual network
(DRN-D-22) [74] as the semantic segmentation model.
We report the mean Intersection over Union (mIoU) on
the validation set of Cityscapes. We compare our method
against SRAAL [18], VAAL [17], QBC [41], Core-set [6],
MC-Dropout [28], and the random selection.

2) Results: Fig. 10 shows the semantic segmentation per-
formances of different active learning methods on Cityscapes.
Our method outperforms the other baselines in terms of
mIoU. The results demonstrate the competence of our method
on the challenging semantic segmentation task. Note that in
the proposed method, neither task model training nor data
sampling needs to exploit extra domain knowledge. Therefore,
our method is independent of tasks. Moreover, the image size
of Cityscapes (i.e., 2048 × 1024) is much larger than that of
the classification benchmarks, indicating that our method is
not sensitive to the data complexity. These advantages make
our method a competitive candidate for complex real-world
applications.

D. Ablation Study

1) Active Data Sampling Strategy: Fig. 11 compares differ-
ent active data sampling strategies on Cifar-10 and Cifar-100.
CyclicOD and EMAOD are two variants of TOD, where

Fig. 10. Active learning results of semantic segmentation on CityScapes
dataset.

Fig. 11. Ablation on active data sampling.

CyclicOD employs the model at the end of last cycle as
the baseline model while EMAOD employs an EMA of
the previous models as the baseline model. LL4AL [16]
uses a learned loss prediction module to sample the unla-
beled data. Fig. 11 shows that the proposed sampling
strategies, i.e., EMAOD and CyclicOD, outperform random
sampling and LL4AL sampling on both datasets, validating
the effectiveness of TOD-based sampling strategy. Cycli-
cOD performs better than EMAOD on Cifar-100, thus we
employ COD as the sampling strategy in our active learning
approach.

2) Semisupervised Task Learning: To evaluate the necessity
of semisupervised task learning in active learning, Fig. 12
compares different loss functions on Cifar-10 and Cifar-100.
CyclicOD loss and EMAOD loss are two TOD-based
unsupervised learning criteria. They are minimized on the
unlabeled data, and, the settings of their baseline models are
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TABLE II

CLASSWISE PERFORMANCES ON CITYSCAPES, WHERE 40% LABELED DATA ARE USED FOR TRAINING. “PROPORTION” DENOTES THE PROPORTIONS
OF CLASSES AT PIXEL LEVEL. “T” IS THE MODEL TRAINED USING ONLY THE TASK LOSS. “T + U” IS THE MODEL TRAINED

USING BOTH THE TASK LOSS AND THE PROPOSED TOD-BASED UNSUPERVISED LOSS

TABLE III

MODEL-LEVEL MODEL SELECTION RESULTS. WE EVALUATE WHETHER THE BEST MODEL IS IN SCOPE OF THE TOP-k MODELS RETURNED BY EACH
METHOD. THE AVERAGE TOP-k PERFORMANCE (%) IS REPORTED. THE NUMBER IN PARENTHESIS IS THE NUMBER OF CANDIDATE MODELS.

BOLD DENOTES THE BEST PERFORMANCE. UNDERLINE DENOTES THE SECOND-BEST PERFORMANCE

Fig. 12. Ablation on semisupervised task learning.

identical to those in the study of sampling strategy as discussed
above. LL4AL loss [16] minimizes the distance between the
predicted loss and the real task loss, and it needs the data
labels. All the auxiliary losses are used in a combination with
the task loss. The full pipeline and the training with only
the task loss are also included in comparison. We observe
that either the EMAOD loss or the CyclicOD loss can help
to improve the performance, and either of them shows a
larger performance improvement than the LL4AL loss. The
EMAOD loss demonstrates a more stable performance than
the CyclicOD loss, indicating that directly applying COD to
unsupervised training may lead to an unstable model training.
A moving average of previous model states enables a more
stable unsupervised training.

Table II shows the per-class performance of standard task
model training on Cityscapes, where 40% labeled data are
observable. The row of “Proportion” in Table II shows the
pixel-level proportion of every class, indicating a severe class
imbalance problem of Cityscapes. We compare the models
trained without (i.e., “T”) and with (i.e., “T + U”) the unsu-
pervised loss. The semisupervised learning yields better results
on 18 out of 19 classes. More importantly, the semisupervised
learning shows more significant performance improvements on
the minority classes than the majority classes, demonstrating

Fig. 13. Per-class accuracy on Cifar-10 using the proposed active learning
method.

that the unsupervised loss imparts robustness to the task model
to handle the class imbalance issue.

3) Per-Class Performance: Fig. 13 shows the per-class
accuracy on Cifar-10 with the proposed active learning
method. The accuracies of the classes are improved along
with the increasing of active learning cycles in most cases,
such that the performance improvement is not biased toward
certain classes. The accuracies of class#3 and class#4 decrease
from the sixth cycle to the seventh cycle, mainly due to the
overfitting.

E. Model Selection

In this section, we study the performance of test data-
aware model selection methods on Cifar-10, Cifar-100, and
SVHN datasets. The baseline methods consist of the uncer-
tainty estimation methods and the loss estimation methods.
The uncertainty estimation methods include least confidence
[10], [75], margin of confidence [33], [76], ratio of confi-
dence [32], and entropy-based method [10], [11], [35]. The
loss estimation methods include training loss, LL4AL [16],
and our TOD method.

We first investigate the model-level model selection per-
formance in Table III. In Table III, we evaluate whether
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Fig. 14. T-SNE visualization on Fashion-MNIST dataset [65]. Colored points: The labeled samples in the training pool. Each color refers to one semantic
category. Gray points: The samples selected for oracle annotation after an active learning cycle. “Random” denotes random selection.

TABLE IV

FINAL TEST ACCURACY (%) OF SAMPLE-LEVEL MODEL SELECTION

FROM A POOL OF TEN CANDIDATE MODELS. Min/Mean/Max
DENOTE THE LOWEST/AVERAGE/HIGHEST PERFORMANCE

OF SINGLE MODELS IN THE POOL

the groundtruth best model is in scope of the top-k models
returned by each method, then report the average top-k per-
formance. We observe that our TOD method achieves the best
performance on Cifar-100 and the second-best performance
on Cifar10 and SVHN. Except TOD, the ratio of confidence
method also performs well on three datasets. The results
demonstrate the effectiveness of TOD for model selection, as it
can pick out the best model from a pool of candidate models
by evaluating them on the test set.

We further study the sample-level model selection perfor-
mance in Table IV. In this experiment, the top-k metric makes
less sense as it needs to be averaged over all the test samples.
Thus, we report the average test accuracy in Table IV. Each
method evaluates the uncertainty/loss of a single sample, then
selects the best model for that sample. The results are averaged
over all the test samples. We observe that our TOD method

TABLE V

ABLATION ON THE NUMBER OF GD STEPS USED IN TOD FOR

MODEL SELECTION. THE FINAL TEST ACCURACY (%) OF

SAMPLE-LEVEL MODEL SELECTION IS REPORTED

outperforms the baseline methods on all three datasets. TOD
also significantly outperforms the best single model, e.g.,
95.54% versus 93.68% on Cifar-10 and 79.49% versus 75.07%
on Cifar-100. The results further demonstrate the effectiveness
of TOD for model selection.

As discussed in Section VI-E, the GD iteration interval
between the evaluated and baseline models is an important
hyperparameter of TOD-based model selection method. There-
fore, we specifically study its effect on model selection in
Table V. We have the following observations: 1) different GD
iteration intervals may induce a slight performance difference
and 2) the best iteration interval is different with respect to
the datasets. We use 1 epoch as the default iteration interval
for other model selection experiments.

F. Time Efficiency

This article proposes to use COD for active data sampling.
Table VI evaluates the time taken for one active sampling
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TABLE VI

TIME (s) TAKEN FOR ONE ITERATION OF ACTIVE SAMPLING USING AN
NVIDIA GTX 1080TI GPU. Number of Sampling Images AND

Size of Images ARE SHOWN FOR EACH DATASET

iteration using different active learning methods. On all the
three image classification datasets with different number and
size of sampling images, COD is faster than the existing
active learning methods. COD is task-agnostic and more
efficient, since it only relies on the task model itself and
it does not introduce extra learnable models such as the
adversarial network (VAAL) [17] or the loss prediction module
(LL4AL) [16].

G. T-SNE Visualization

As shown in Fig. 14, we further conduct t-SNE visu-
alization [77], which allocates every high-dimensional data
point a location in a 2-D map, to better understand the
active data selection strategies. We study three active selection
strategies including LL4AL [16], our COD, and a random
selection baseline on Fashion-MNIST dataset [65]. We use
the model trained under each strategy to compute the after-
softmax class probabilities of all the labeled and unlabeled
samples. The probabilities are used as the input data points
for t-SNE visualization. In Fig. 14, we use colored points to
denote the labeled samples in training pool and gray points
to denote the selected samples after each active learning
cycle.

We have the following observations from Fig. 14. First,
in early active learning cycles, most of the samples selected by
COD and LL4AL are on the boundaries of classes, however,
the samples selected by the random method are distributed
uniformly within the area of each class. Those samples on
class boundaries remain more uncertainty with respect to the
task models, thus they can significantly help model training
in the future. Second, the above observation is more distinct
in early cycles than in late cycles, i.e., more selected sam-
ples appears in the area of each class in late cycles. The
reason is that there are less samples of high uncertainty in
late cycles, Third, the t-SNE clustering results of COD are
slightly better than those of Random and LL4AL in late
cycles. It demonstrates the effectiveness of COD in active data
selection.

VII. CONCLUSION

In this article, we have presented a simple yet effective
deep active learning approach. The core of our approach is
a measurement TOD which estimates the loss of unlabeled
samples by evaluating the discrepancy of outputs given by
task models at different gradient descend steps. We have
theoretically shown that TOD lower-bounds the accumulated

sample loss. On basis of TOD, we have developed an unla-
beled data sampling strategy and a semisupervised training
scheme for active learning. We have also presented a TOD-
based model selection method, which is able to select the
models of potentially high testing accuracy from a model pool.
Due to the simplicity of TOD, the methods proposed in this
article are efficient, flexible, and easy to implement in practice.
Extensive experiments have demonstrated the effectiveness of
our methods on various image classification and semantic
segmentation tasks. In future work, it is a meaningful direction
to combine the proposed methods with diversity-aware active
learning methods to further reduce the redundancy in selected
samples. We plan to incorporate diversity measures into our
algorithms, as well as applying our methods to clusters [26]
or core-sets [6], [70] of data points.

APPENDIX

A. Proofs

Theorem 2: With an appropriate setting of learning rate η

D{1}t (x) ≤ η
√

2Lt (x)‖∇w f (x;wt)‖2. (11)

Proof: We apply one-step GD to wt then using first-order
Taylor series

D{1}t (x)
def= ‖ f (x;wt+1)− f (x;wt)‖
= ‖ f (x;wt − η∇wt Lt (x))− f (x;wt)‖
= ‖ f (x;wt)− η∇w f (x;wt)

T∇w Lt (x)− f (x;wt)‖
= ‖ − η∇w f (x;wt)

T∇w Lt (x)‖. (12)

Recall that

∇w Lt (x) = (y − f (x;wt)) · ∇w f (x;wt). (13)

By substituting (13) into (12)

D{1}t (x) = η‖(y − f (x;wt)) · ∇w f (x;wt)
T∇w f (x;wt)‖

≤ η‖(y − f (x;wt))‖ · ‖∇w f (x;wt)‖2

= η
√

2Lt (x)‖∇w f (x;wt)‖2. (14)

Corollary 3: With an appropriate setting of learning rate η

D{T }t (x) ≤ √2η

t+T−1∑
τ=t

(√
Lτ (x)‖∇w f (x;wτ)‖2

)
. (15)

Proof:

D{T }t (x)
def= ‖ f (x;wt+T )− f (x;wt)‖

≤
t+T−1∑

τ=t

‖ f (x;wτ+1)− f (x;wτ)‖

≤ √2η

t+T−1∑
τ=t

(√
Lτ (x)‖∇w f (x;wτ)‖2

)
. (16)

Remark 2: For a linear layer φ(x;W ) with ReLU activa-
tion, the Lipschitz constant L(W ) ≤ ‖x‖.

Proof:

‖φ(x;W + r)− φ(x;W )‖
= ‖max(0, (W + r)Tx + b)−max(0, W Tx + b)‖
≤ ‖rTx‖
≤ ‖x‖ · ‖r‖. (17)

Therefore, the Lipschitz constant L(W ) ≤ ‖x‖.
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TABLE VII

SUMMARY OF DATASETS USED IN THE EXPERIMENTS. “IMAGE SIZE” IS THE SIZE OF IMAGES USED FOR TRAINING (AFTER PREPROCESSING)

TABLE VIII

SUMMARY OF IMPLEMENTATION DETAILS ON EACH DATASET. “START” IS THE NUMBER OF INITIALLY LABELED SAMPLES AND “BUDGET” IS
THE NUMBER OF NEWLY ANNOTATED SAMPLES IN EACH CYCLE. “CYCLE” IS THE NUMBER OF ACTIVE LEARNING CYCLES.

α IS THE EMA DECAY RATE AND λ IS THE WEIGHT FOR UNSUPERVISED LOSS

Corollary 4: With appropriate settings of a learning rate η
and a constant C

D{T }t (x) ≤ √2T ηC

√√√√t+T−1∑
τ=t

Lτ (x). (18)

Proof: By substituting ‖∇w f ‖2 ≤ C into Corollary 3 then
applying Cauchy–Schwarz inequality, we have

D{T }t (x) ≤ √2ηC
t+T−1∑

τ=t

√
Lτ (x)

≤ √2TηC

√√√√t+T−1∑
τ=t

Lτ (x). (19)

B. Experimental Details of Image Classification

1) Datasets: We evaluate the active learning methods
on four common image classification datasets, includ-
ing Cifar-10 [64], Cifar-100 [64], Fashion-MNIST [65],
SVHN [66], Caltech-101 [67], and STL-10 [68]. CIFAR-10
and CIFAR-100 consist of 50 000 training images and
10 000 testing images with the size of 32 × 32. CIFAR-10
has ten categories and CIFAR-100 has 100 categories. SVHN
consists of 73 257 training images and 26 032 testing images
with the size of 32 × 32. SVHN has ten classes of
digit numbers from “0” to “9.” Fashion-MNIST consists of
60 000 training images and 10 000 testing images with the
size of 28 × 28. Fashion-MNIST has ten classes of fashion
images including t-shirt, trouser, dress, coat, and bag. For
training on Cifar-10, Cifar-100, Fashion-MNIST, and SVHN,
we randomly crop 32 × 32 images from the 36 × 36 zero-
padded images. Caltech-101 consists of 9146 images with

the size of 300 × 200. Caltech-101 has 101 semantic cate-
gories as well as a background category that there are about
40–800 images per category. By following [18], we use 90%
of the images for training and 10% of the images for testing.
On Caltech-101, we resize the images to 256 × 256 and crop
224× 224 images at the center. STL-10 consists of 5000 train-
ing images and 8000 testing images with the size of 96 × 96,
serving as a high-resolution extension of Cifar-10. On STL-10,
we resize the images to 128 × 128 and crop 96 × 96 images
at the center. Random horizontal flip and normalization are
applied to all the image classification datasets. We summarize
the details of the datasets in Table VII.

2) Implementation Details: We employ ResNet-18 [69] as
the image classification model. On all the image classification
datasets, the labeling ratio of each active learning cycle is 10%,
15%, 20%, 25%, 30%, 35%, and 40%, respectively. In an
cycle, The model is learned for 200 epochs using an SGD
optimizer with a learning rate of 0.1, a momentum of 0.9,
a weight decay of 5× 10−4, and a batch size of 128. After 80%
of the training epochs, the learning rate is decreased to 0.01.
We summarize the implementation details in Table VIII.

C. Experimental Details of Semantic Segmentation

1) Dataset: We evaluate the active learning methods
for semantic segmentation on the Cityscapes dataset [73].
Cityscapes is a large-scale driving video dataset collected from
urban street scenes of 50 cities. It consists of 2975 training
images and 500 testing images with the size of 2048 × 1024.
By following [17], we convert the dataset from the original
30 classes into 19 classes. We crop 688 × 688 images from
the original images for training. Random horizontal flip and
normalization are applied to the images.

2) Implementation Details: We employ the DRN-D-22 [74]
as the semantic segmentation model. The labeling ratio of each

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Texas A M University. Downloaded on August 16,2022 at 20:54:47 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: TOD FOR LOSS ESTIMATION-BASED ACTIVE LEARNING 13

Fig. 15. Empirical study on unsupervised loss weight λ and EMA decay rate α. The study is conducted on Cifar-100 with 10%, 20%, 30%, and 40% of
labeled images, respectively. λ = 0.05 and α = 0.999 achieve the best performances.

Fig. 16. Performance of benchmark active learning methods trained without
(left) and with (right) the unsupervised loss on three datasets.

active learning cycle is 10%, 15%, 20%, 25%, 30%, 35%,
and 40%, respectively. In an cycle, the model is learned for
40 epochs using an Adam optimizer [78] with a learning rate
of 5 × 10−4 and a batch size of 4.

D. Study on Hyperparameters

The unsupervised learning plays a vital role in training the
task model in active learning. Here we further investigate the
hyperparameter selection for our proposed unsupervised learn-
ing method. The hyperparameters include the unsupervised
loss weight λ and the EMA decay rate α. We conduct empirical
studies using our full active learning pipeline on Cifar-100
dataset to investigate the performance variation with different
λ and α. Fig. 15 shows the results on labeling budgets of

10%, 20%, 30%, 40%, respectively. In most of the cases,
λ = 0.05 and α = 0.999 achieve the best performance.
Therefore, we adopt λ = 0.05 and α = 0.999 for all the
experiments in this article, wherever EMA is involved.

E. More Results of Active Data Selection Strategy

We additionally compare the active data selection strategies
by training the task model with and without the unsupervised
loss, respectively. Fig. 16 shows that our method achieves
superior performances on most of the datasets and settings
(either with or without unsupervised loss), demonstrating its
effectiveness in active data selection.
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