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User-Ranking Video Summarization with
Multi-Stage Spatio-Temporal Representation
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Abstract—Video summarization is a challenging task, mainly
due to the difficulties in learning complicated semantic structural
relations between videos and summaries. In this paper, we present
a novel supervised video summarization scheme based on three-
stage deep neural networks. The scheme takes a divide-and-
conquer strategy to resolve the complicated task of 3D video
summarization into a set of easy and flexible computational
subtasks, and then to sequentially perform 2D CNNs, 1D CNNs,
and LSTM to address the subtasks in an hierarchical fashion.
The hierarchical modeling of spatio-temporal structure leads to
high performance and efficiency. In addition, we propose a simple
but effective user-ranking method to cope with the labeling sub-
jectivity problem of user-created video summarization, leading
to the labeling quality refinement for robust supervised learning.
Experimental results show that our approach outperforms the
state-of-the-art video summarization methods on two benchmark
datasets.

Index Terms—Video summarization, recurrent neural network,
convolutional neural network, multi-user inconsistency, user
ranking.

I. INTRODUCTION

As an important and challenging problem in computer
vision, automatic video summarization aims at generating

Manuscript received March 04, 2018; revised August 09 and November
07, 2018; accepted December 11, 2018. Date of publication XXX, 2019;
date of current version XXX, 2019. This work is supported in part by
NSFC (U1509206, 61472353, 61672456, and 61751209), Zhejiang Lab
(2018EC0ZX01-2), the fundamental research funds for central universities
in China (No. 2017FZA5007), the Key Program of Zhejiang Province,
China (No. 2015C01027), ZJU Converging Media Computing Lab, Zhejiang
Provincial Natural Science Foundation of China under Grant LR19F020004,
the National Basic Research Program of China under Grant 2015CB352302,
Zhejiang University K.P.Chao’s High Technology Development Foundation,
the funding from HIKVision, Artificial Intelligence Research Foundation of
Baidu Inc., and Tencent AI Lab Rhino-Bird Joint Research Program(No.
JR201806) The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Julian Fierrez. (Corresponding
author: Xi Li.)

S. Huang is with the College of Information Science and Elec-
tronic Engineering, Zhejiang University, Hangzhou 310027, China (e-mail:
siyuhuang@zju.edu.cn).

X. Li is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China, and also with the Alibaba-Zhejiang
University Joint Institute of Frontier Technologies, Hangzhou 310027, China.
(email: xilizju@zju.edu.cn).

Z. Zhang is with the College of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou 310027, China, and also with
the Computer Science Department, Watson School, The State University of
New York Binghamton University, Binghamton, NY 13902 USA (e-mail:
zhongfei@zju.edu.cn).

F. Wu is with the College of Computer Science and Technology, Zhejiang
University, Hangzhou 310027, China (email: wufei@cs.zju.edu.cn).

J. Han is with the School of Automation, Northwestern Polytechnical
University, Xi’an 710072, China (e-mail: junweihan2010@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Train / Test

0

1

2

3

Different User Summaries

#frame

    Stage-3:  LSTM

Stage-2: 1D FCN

Stage-1: 2D CNN

Video

User-ranking

Refined importance scores

Fig. 1. A brief illustration of our approach. We propose a novel video
summarization scheme based on three-stage deep neural networks consisting
of 2D CNNs, 1D CNNs, and LSTM. The scheme learns the mapping between
videos and frame-level importance scores in a hierarchical fashion. In addition,
we propose a novel user-ranking method to refine ground truth importance
scores by ranking the summary quality of users.

a short synopsis to extract the most informative parts of
the video, which is crucial for human to effectively and
efficiently browse and understand large amounts of video
data in a user-friendly manner. Typically, it is formulated as
a supervised learning problem that learns a spatio-temporal
mapping function to select key frames or subshots from a
video sequence, as illustrated in Fig. 1. Video summarization
requires the modeling of the long-term temporal context, e.g.,
the topic or event, and also the short-term context, e.g., the
motion and activity. Therefore, how to effectively perform
spatio-temporal context modeling in an hierarchical fashion is
a key issue to solve. Moreover, due to the subjective factors in
annotating the ground truth by different persons, there exists a
label inconsistency or bias problem, which may contaminate
or confuse the supervised learning process to some degree.
As a result, how to refine the label qualities for robust video
summarization is another focus.

In general, the learning-based video summarization process
is composed of two stages: 1) spatio-temporal video repre-
sentation; and 2) key frame selection based sequence summa-
rization. As a result, the difficulties in effective learning-based
video summarization lie in the following three aspects: a) 3D
video context modeling in both spatial and temporal dimen-
sions; b) precise 1D key frame selection taking into account
long-range and local-range temporal dependency; and c) joint
modeling of video representation and sequence summarization.

Motivated by the above observations, we concentrate on
designing a simple yet effective 3D deep learning scheme for
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effective 3D context modeling and precise temporal structure
analysis. Specifically, we formulate 3D context modeling as
a problem of sequentially performing 2D CNNs, 1D CNNs,
and LSTM. In this way, the complicated task of 3D video
summarization is reduced to a set of easy and flexible
computational subtasks, where the main summarization job
corresponds to 1D CNN+LSTM sequence learning for tempo-
ral structure modeling followed by standard fully-connected
layers for final summarization determination. Technically, the
1D-CNNs capture the short-term temporal context in a local
range around current frame, while the LSTMs capture the
long-range context of the sequence. Both the long-range and
local-range contexts are required in video summarization and
can be well complementary to each other. In face of high-
performance large-scale video processing, such a modeling
architecture is advantageous in the following aspects: 1) easy
implementation and high computational efficiency; 2) flexible
CNN structure design and effective existing CNN model reuse
instead of learning from scratch; 3) encoding the complicated
and hierarchical semantic structure of video summarization
along the temporal dimension.

In addition, in this paper we propose to address the labeling
subjectivity problem of user-created video summarization.
Usually, existing supervised video summarization methods
directly adopt average user-annotated frame-level (or key-
shots [1] preferred by majority users) importance scores [2] as
ground truth. Since the annotations generated from different
users are often inconsistent with each other, the aforemen-
tioned ground truth labeling strategy is likely to contaminate
or inaccurately guide the above learning process. Motivated
by this observation, we propose a simple but effective user-
ranking method to evaluate the summary qualities for different
users, resulting in more feasible and reliable ground truth for
robust supervised learning.

In summary, the main contributions of this work are sum-
marized as follows:

1) We present a novel video summarization scheme based
on a hierarchical three-stage deep learning framework,
which takes an effective divide-and-conquer strategy
for 3D context modeling for feature representation as
well as hierarchical temporal structure analysis for video
summarization determination.

2) We propose a simple but effective user-ranking method
to cope with the underlying subjectivity problems with
multi-user ground truth annotations, leading to the label-
ing quality refinement for robust deep learning. To our
knowledge, it is the first work to explore the multi-user
annotation ambiguity in video summarization and refine
the labeling quality for robust supervised learning.

II. RELATED WORK

We first provide a brief survey of the video summarization
methods proposed in recent literatures. Then, we discuss
several related efforts on neural network based sequence mod-
eling, especially the 1D convolution and LSTM, as they are
the key components of our video summarization framework.

Video summarization: Researchers have proposed various
unsupervised and supervised learning based video summa-
rization algorithms [3–7]. Unsupervised approaches manually
design intuitive criteria including representativeness [8–11],
diversity [12–14] and importance [15, 16] to prioritize the
frames. While supervised approaches [2, 17, 18] aim at
learning subset selection models under supervision of human-
created summaries such that they better align with how humans
would summarize the video. In this paper we focus on the
supervised approaches.

Prior work on supervised video summarization [18–21]
formulates several hand-crafted criteria as submodulars and
learns a combination function of them to approximate the
human-created summaries. In the more recent literature, re-
searchers completely discard the hand-crafted criteria such that
they learn deep neural network models to directly pick out
informative video frames. For instance, Yao et al. [1] propose
a pairwise deep ranking model to learn the relations between
high-light and non-highlight video segments. Zhang et al. [2]
build deep regression model based on LSTM to infer frame-
level importance scores annotated by humans.

From the perspective of context modeling, Zhang et al. [5]
detect the local motion regions and build a dictionary of corre-
lation feature graphs to model the interactions between motion
regions. In contrast, our model is data-driven in which the
spatial and temporal dependencies are learned by a hierarchical
framework.
1D convolution and LSTM: In this work we address the
problem of video summarization in view of temporal struc-
ture modeling based on 1D convolution and LSTM. The
1D convolutional architecture [22–24] is first proposed for
sentence representation, and has achieved a great success on
various computer vision tasks [25, 26]. With layer-by-layer
composition and pooling, 1D convolutional architecture can
hierarchically capture temporal context at different levels. The
Long Short-Term Memory (LSTM) [27] is a specific recurrent
neural network (RNN) architecture which is advantageous
in modeling long-range temporal dependencies compared to
conventional RNNs. Except for its prior success on various
tasks [28–30], recently LSTM-based methods [2, 31–33] have
achieved the state-of-the-art results on several benchmark
video summarization datasets.

Nevertheless, video summarization still remains challenging
as it needs to reveal complicated multi-level semantic structure
along the temporal dimension. Although the combination of
1D-convs and LSTMs is rarely explored in computer vision
community, it has been widely studied in other fields of
sequential learning including text analysis [34–36], acoustics
processing [37], and signal processing [38]. For instance, the
C-LSTM model [34] utilizes CNNs to extract a sequence of
higher-level phrase representations and feed them into LSTMs
to obtain the sentence representation, capturing both local
features of phrases as well as global sentence semantics. Sim-
ilarly, from the perspective of sequence learning, we propose
a novel three-stage deep learning scheme consisting of 2D
CNNs, 1D fully convolutional networks (FCNs), and LSTM to
jointly learn multi-level and multi-range spatio-temporal struc-
tural relations between videos and summaries, thus generating
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Fig. 2. The architecture of our three-stage spatio-temporal network. The input is a video clip consisting of 128 frames. Stage-1 extracts visual features
of these frames using a two-stream VGG Network. Stage-2 employs deep 1D FCNs with a stack of 1D convolutional layers and 1D max-pooling layers to
model multi-range temporal context. Stage-3 further employs an LSTM layer to capture the long-time dependencies and an MLP layer to output frame-level
scores.

reasonable summaries which accord with human recognition.

III. THREE-STAGE VIDEO SUMMARIZATION FRAMEWORK

A. Problem formulation

Video summarization is a sequence subset selection prob-
lem, where the most informative subsets of a video are picked
up for summary. To decide which subsets are valuable to
keep, we formulate the problem as estimating the frame-
level importance scores y = {y1, y2, ..., yT } for all the
corresponding video frames x = {x1, x2, ..., xT }, such that
those subsets of the largest importance scores are picked up
for summary.

The learning of mapping function x −→ y presents two key
issues: 1) How to effectively model the complicated seman-
tic structural relation between x and y? 2) The summaries
created by different users are largely inconsistent with each
other due to the severe subjectivity of video summarization.
Motivated by the first issue, we propose a three-stage video
summarization scheme to learn the mapping function x −→ y
based on hierarchical spatio-temporal modeling, as discussed
in the following of Section III. Motivated by the second issue,
we propose a user-ranking method to refine the label quality of
y for supervised video summarization, as discussed in Section
IV.

B. Three-stage video summarization scheme

In this paper, we propose a novel video summarization
scheme to tackle the learning of x −→ y in three stages: (1) 2D
CNNs, (2) 1D FCNs, and (3) LSTM, based on the observation
that hierarchical spatial and temporal modeling is necessary for
video analysis and summarization. More specifically, Stage-1
learns the visual representation v of input frames x based
on 2D CNNs. Stage-2 uses 1D FCNs to model multi-range
temporal context of v as u. Stage-3 further uses LSTM to
capture the long-time temporal dependencies in u to output
the frame-level importance scores y. The three-stage video
summarization framework is formulated as

x
S1: 2D CNNs−−−−−−−→ v

S2: 1D FCNs−−−−−−−→ u
S3: LSTM−−−−−→ y. (1)

As illustrated in Fig. 2, the three stages are hierarchically
learned in a unified framework. Based on the hierarchical
spatio-temporal modeling, our framework is able to capture
different types of temporal semantic structure, thus enabling
good video summaries.

C. Hierarchical spatio-temporal modeling

2D CNNs: In Stage-1, we use 2D CNNs for visual rep-
resentation extraction as x

Stage-1: 2D CNNs−−−−−−−−−−→ v, where v =
{v1, v2, ..., vT }, T is the number of frames. The architecture of
2D CNNs is the two-stream VGG Network [39] proposed for
video action recognition. The input to the two-stream network
is respectively the RGB image and optical flow image of a
frame xt, and the output is the corresponding visual feature
vector vt, where t = 1, 2, ..., T .
1D FCNs: After representing the video frames as a sequence
of visual feature vectors, video summarization is reformulated
as a 1D sequence-to-sequence learning problem. It presents
the challenge of modeling complicated semantic structure
along the temporal dimension. Motivated by this, we address
the problem under 1D scheme, and novelly leverage the 1D
convolutional architecture into our neural network framework
as a temporal encoder, in order to model deep temporal context
of visual representation sequence v, as v

Stage-2: 1D FCNs−−−−−−−−−→ u.
Different from the commonly used 2D CNNs, 1D convolu-

tional filters only slide on the temporal dimension of a vector
sequence. Given sequence input v, the feature map z of the
l-th layer, f -th filter at location i is formulated as

z
(l,f)
i = φ

Fl−1∑
j=1

W (l,f,j)z
(l−1,j)
i + b(l,f,j)

 , (2)

z
(l,f)
i ∈ Rk·D denotes the segment at location i of the f -

th feature map in layer l, where k is the convolutional filter
width and D is the feature dimension. W (l,f,j) and b(l,f,j)

are parameters of the convolutional filter connecting the j-
th feature map in layer l − 1 and the f -th feature map in
layer l. φ is the activation function. Fl is the number of
feature maps in layer l, such that j = 1, 2, ..., Fl−1 and
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f = 1, 2, ..., Fl. The input to the 1D convolutional network
is v = {v1, v2, ..., vt, ..., vT }, forming the only feature map in
layer 0, as

z
(0,1)
i = vi:i+k−1

def
=


vi
vi+1

...
vi+k−1

 . (3)

An illustration of the 1D convolutional architecture is shown
in Fig. 3. There is only one feature map in layer 0. Convo-
lutional filters are operated along the first dimension of the
feature map in a manner of sliding window. In deeper layers,
there are multiple feature maps in a layer. The width of all the
feature maps is equal to 1, and the filters work in a similar
way. Our 1D FCNs are a stack of these 1D convolutional
layers and max-pooling layers, such that the feature maps in
deep layers can capture multi-level and multi-range semantic
relations between units. The output of 1D FCNs is a sequence
of vectors u = {u1, u2, ..., ut, ..., uT/d}, where d is the down-
sampling ratio by max-pooling layers.
LSTM: In Stage-3, we further use LSTM to model the
long-time dependencies within sequence h to better cap-
ture the summarizing criterion and estimate accurate frame-
level importance scores y, as u

Stage-3: LSTM−−−−−−−−→ y. LSTM
[27] is a special kind of RNN which adopts memory cells
to learn when to forget previous hidden states and when
to update hidden states given new information. Specifically,
in this work we employ LSTM architecture as described
in [29] to map the spatio-temporal representation sequence
u = {u1, u2, ..., ut, ..., uT/d} to a sequence of hidden states
h = {h1, h2, ..., ht, ..., hT/d} as

it = σ(Wuiut +Whiht−1 + bi),

ft = σ(Wufut +Whfht−1 + bf ),

ot = σ(Wuout +Whoht−1 + bo),

gt = tanh(Wugut +Whght−1 + bg),

ct = ft � ct−1 + it � gt,
ht = ot � tanh(ct),

(4)

where σ is the sigmoid nonlinearity function, and � is the
element-wise products. The core of LSTM is the memory
cell ct ∈ RN which encodes the information of inputs up
to time step t. ct is a summation of the previous memory cell
ct−1 modulated by forget gate ft ∈ RN , and current input

modulation gate gt ∈ RN modulated by input gate it ∈ RN .
The output ht ∈ RN is a function of ct modulated by output
gate ot ∈ RN . The three on/off knob gates it, ft, ot determine
whether the LSTM keeps the values at the gates (1) or discard
them (0), enabling the LSTM to learn complex and long-term
temporal dynamics.

In theory, the LSTMs capture the long-term sequential
information of the whole input sequence, e.g., the topic of
a video. And, the 1D-convs capture the short-term temporal
context in a local range around current frame, e.g., the motion
or activity. Both these two types of temporal modeling are
required in video summarization. The stack of 1D-convs and
LSTMs enables a high temporal modeling performance for our
video summarization model.

D. Summarization determination

We embed each ht of LSTM’s output h to a scalar value yt
using one layer of multi-layer perceptron (MLP). Due to the
downsampling effect of max-pooling layers, we upsample y =
{y1, y2, ..., yT/d} to ỹ = {ỹ1, ỹ2, ..., ỹT } using bilinear filter,
and ỹ is the output frame-level importance scores. We use
Euclidean loss L to measure the difference between estimated
scores ỹ and ground truth scores ygt:

L = ‖ỹ − ygt‖22. (5)

Finally, we generate the summarization segments based on
the frame-level importance scores. Since there is generally
no ground-truth temporal segmentation provided by video
summarization datasets, we follow [2] to split a video into a
set of non-intersecting temporal segments by kernel temporal
segmentation (KTS) [4]. Then, the segments with the largest
importance scores are picked up for summary, while, their
total duration is below a certain threshold l. Note that this
is exactly the 0/1 knapsack problem and we solve it by
dynamic programming [17]. The summary is then created by
concatenating the selected segments in chronological order.

IV. USER-RANKING

Due to the inherent subjectivity of video summarization,
the video summaries created by different users are largely in-
consistent with each other. To tackle the multi-user annotation
ambiguity problem, we propose a simple but effective method,
namely user-ranking, to refine the quality of multi-user ground
truth annotations based on ranking the summary quality of
users.

A. Analysis on user consistency

To measure the consistency of two summaries SA and SB

for one video, we use harmonic mean F-score [2, 17] as

F (SA, SB) =
2 · P ·R
P +R

· 100%, (6)

where

P =
length(SA ∩ SB)

length(SA)
, R =

length(SA ∩ SB)

length(SB)
.

‘length’ denotes the time duration and ∩ denotes the temporal
overlap. For a video summarization dataset of N videos,
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TABLE I
USER CONSISTENCY AND USER QUALITY Q OF SUMME AND TVSUM DATASETS

Baseline Humans User quality Q
Rand Uni Worst Mean Best Min Mean Max

SumMe 18.7 15.4 17.9 31.1 40.9 0.53±0.21 1.0±0 1.33±0.14

TVSum 23.9 14.7 19.5 46.9 70.2 0.52±0.14 1.0±0 1.34±0.09

(a) (b)

Fig. 4. Visualization of user-to-user consistency within two videos: (a)
‘Bearpark climbing’ of SumMe dataset [17] with 15 user-created summaries,
and (b) ‘Will a cat eat dog food?’ of TVSum dataset [10] with 20 user-
created summaries. There is almost no user-to-user consistency larger than
80%, indicating the severe inconsistency among user-created summaries.

the user-to-user consistency C between two users i and j is
estimated by

C(i, j) =
1

N

N∑
n=1

F (Sn
i , S

n
j ). (7)

Sn
i is the summary of video n created by user i ∈ 1, 2, ...,M ,

where M is the number of users.
Fig. 4 illustrates the user-to-user consistency computed

by C within two videos of two popular benchmark video
summarization datasets SumMe [17] and TVSum [10]. since
there is no explicit user-video pair given in these datasets, N
is set to 1 for Eq. 7. Fig. 4 shows that almost no user-to-user
consistency is larger than 0.8, and most of the consistencies
are between 0 to 0.5.

The overall user consistency for SumMe and TVSum
datasets is reported in the left part of Table I. Each evalu-
ated summary is compared with the ground-truth summary
averaged from summaries created by multiple users. For
“Baseline”, there is only one evaluated summary for a video,
which is generated by a baseline method “Rand” or “Uni”.
The “Rand” baseline randomly creates summaries and the
‘Uni’ baseline creates summaries by uniformly sampling 2-
second video clips along the timeline. For “Humans”, there
are M evaluated summaries created by M users on a video.
They are compared with the ground-truth summary respec-
tively. ‘Worst’, ‘Mean’, and ‘Best’ under “Humans” report
the average of the worst, mean, and the best F-scores among
user-created summaries. All the results shown in Table I are
averaged over the videos.

Table I indicates that human annotators are largely inconsis-
tent with each other. The performance of worst human-created
summaries is close to that of the naive baseline methods. The
F-scores of human’s average level are respectively 31.1 and

Algorithm 1: Estimation of summary qualities of users
Input: User-created summaries S
Output: User summary quality Q
1. Initialize Q with equivalent values;
2. while Q is not in a steady state do

- Update Q using Eq. 8.

46.9 on the two datasets, indicating that less than half of
human-created summary fragments agree with the averaged
preference of humans. All of the evidences reveal the challenge
of severe subjectivity in video summarization task.

B. Ranking users
To tackle the problem of multi-user annotation ambiguity

in video summarization, we propose a simple but effective
user-ranking method. Specifically, we first rank the summary
quality of individual users, and then refining the ground truth
importance scores based on user quality.

To rank the user quality, we formulate an intuitive definition:
Definition 1 A user owns high quality if he/she is consistent
with most of the other users. A user owns higher quality if
he/she is more consistent with the other high-quality users.

On one hand, Def. 1 implies that the consistency between
users is the fundamental metric for measuring user quality. The
high-quality users share more similar summary preferences.
On the other hand, Def. 1 implies that high-quality users have
more influence in measuring other users’ quality. It is inspired
by PageRank[40] which lets a web-page have high rank if
the sum of the ranks of its backlinks is high. In this case,
PageRank propagates the influence of high-quality users and
further encourages the high-quality summaries.

Based on Def. 1, we formulate the summarization quality
Q of user i as

Qi =
1

‖Z‖

M∑
j=1,j 6=i

QjC(i, j). (8)

Both the quality Q of the other users and the user-to-user
consistency C jointly decide the quality of user i. The higher
Q indicates the higher confidence level of video summaries
created by the corresponding user. Z is the normalization
factor which limits the mean value of Q to 1. As the elements
in Q are calculated based on the other elements in it, we use
a simple iterative method to update Q until the elements in Q
form a dynamic equilibrium, namely, Q is in a steady state.
The iterative update procedure is described in Algorithm 1.

The right part of Table I shows the minimum, mean, and the
maximum user quality Q computed on the two datasets, where
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TABLE II
VARIATIONS OF USER SUMMARY QUALITY Q

Iter. Variations of Q
SumMe TVSum

1 18.19% 17.89%
2 2.72% 2.24%
3 0.64% 0.42%

the quality of different users varies largely on both datasets.
Table II shows the change of Q in the first three iterations.
The iterative update method is efficient that Q could quickly
converge to a steady state on both datasets.

C. Ground truth refinement

We create the weighted average frame-level importance
scores ŷgt based on a set of scores yuser created by M users,
as

ŷgt =
M∑
i=1

δ (ln(Qi)) ln(Qi)y
i
user. (9)

δ is the indicator function where δ(θ)=1 if θ>0 else δ(θ)=0.
The generation of ŷgt only refers to the importance scores
annotated by users of above-average level, for the goal of fur-
ther reducing the noise in ŷgt. The logarithm is used to further
encourage the highest-quality users, for instance transforming
user quality Q ∈ [1.01, 1.34] into ln(Q) ∈ [0.01, 0.29] on
TVSum dataset.

Our user-ranking approach refines the ground truth summary
by paying more attention to high-quality user-created sum-
maries and discarding low-quality summaries. Thus the model
is learned under the guidance of preference of good users,
leading to performance improvement by generating summaries
closer to the most common preference. In experiments, ŷgt is
demonstrated to improve the performance of video summa-
rization model compared to its conventional version ygt.

V. EXPERIMENTS

A. Experimental Setup

Network architecture: Our three-stage spatio-temporal
network is successively built upon 2D CNNs, 1D FCNs, and
LSTM. The input to the network is 128 video frames and the
output is 128 corresponding frame-level scores. The network
architecture is two stream vgg fc6-conv1(11,192)-
pool1(2)-LRN-conv2 1(5,256)-conv2 2(5,256)-pool2(2)-
conv3 1(3,512)-conv3 2(3,512)-conv3 3(3,512)-pool3(2)-
conv4(1,1024)-lstm(1024,16)-mlp(1,16)-up(8). Numbers in
the parentheses of conv are respectively kernel size and
number of channels. Each convolutional layer is followed by
a ReLU activation function and is padded to keep the same
as its last layer. The input and output of lstm is 16 1024d
vectors.
Implementation details: We use the Caffe toolbox [41] to
implement the proposed framework. The network is trained
for 10K iterations with a batch size of 40 and learning rate of
10−4. Due to the effect of gradient vanishing for deep neural

TABLE III
COMPARING TO STATE-OF-THE-ART METHODS, INCLUDING

PERFORMANCES ON TWO DATASETS AND NUMBERS OF LEARNABLE
PARAMETERS (MILLION).

Method SumMe TVSum Params
Video MMR, 2010 [3] 26.6 - -
Super-frame, 2014 [17] 39.4 - -
Submodular, 2015 [20] 39.7 - -
DPP, 2016 [18] 40.9 - -
Web-image prior, 2013 [8] - 36.0 -
LiveLight, 2014 [14] - 46.0 -
TVSum, 2015 [10] - 50.0 -
ERSUM, 2017 [21] 43.1 59.4 -
MSDS-CC, 2018 [42] 40.6 52.3 -
vsLSTM, 2016 [2] 37.6 54.2 2.63
dppLSTM, 2016 [2] 38.6 54.7 2.63
SUM-GANdpp, 2017 [31] 39.1 51.7 295.86
SUM-GANsup, 2017 [31] 41.7 56.3 295.86
A-AVS, 2017 [33] 43.9 59.4 4.40
M-AVS, 2017 [33] 44.4 61.0 4.40
SASUM, 2018 [43] 40.6 53.9 44.07
SASUMsup, 2018 [43] 45.3 58.2 44.07
DR-DSN, 2018 [44] 41.4 57.6 2.63
DR-DSNsup, 2018 [44] 42.1 58.1 2.63
Ours 46.1 60.0 16.18
Ours+user ranking 48.0 62.0 16.18

networks, we fix the parameters of two-stream VGG Network
in the training phase, as the network is already pretrained
on large-scale video datasets [39] thus providing good and
robust visual features of video scenes. For kernel temporal
segmentation, the minimal length of a shot segment is set as
two seconds. The summary length ratio is set as 15%.
Dataset: We evaluate our method on two benchmark datasets
of video summarization, including SumMe dataset [17] and
TVSum dataset [10]. The SumMe dataset consists of 25 user
videos covering holidays, events and sports. The TVSum
dataset consists of 50 videos from YouTube in various genres,
including news, documentaries, and user-generated content.
Most of the videos are 1 to 5 minutes in length. Both datasets
provide frame-level importance scores annotated by multiple
users. Following [2, 17], we perform 5-fold cross validation
on each dataset.
Evaluation metric: By following the convention of the ex-
isting literature [2, 17] for video summarization, we use the
F-score as described in Eq. 6 to evaluate the performance of
machine generated summary compared with human summary.
As multiple summaries are possible for one video, we follow
[2, 20] to compare the machine generated summary with all
the human-annotated summaries and take the largest F-score
as its performance.

B. Evaluation on video summarization

Comparing to state-of-the-art methods: Table III compares
the performances of state-of-the-art methods and our method
on SumMe dataset [17] and TVSum dataset [10]. The first
section and the second section show results of conventional
methods and deep neural network based methods, respectively.
The third section show results of our method where ‘Ours’ is
the result of our proposed three-stage video summarization
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Fig. 5. Qualitative results of video ‘Poor Man’s Meals: Spicy Sausage Sandwich’. Four rows respectively show input video frames, frame-level scores
estimated by our method, summaries created by 20 different users, and key frames of our summary.

scheme and ‘Ours+user ranking’ is the result of our model
learned by refined ground truth labels. We collect the imple-
mentations of the state-of-the-art methods, replicate the models
using PyTorch [45], and estimate their numbers of learnable
parameters, as shown in the last column of Table III.

For the conventional methods, Video MMR [3] is the Video
Maximal Marginal Relevance method which aims at rewarding
relevant frames and penalizing redundant frames. Super-frame
[17] is the super-frame interestingness estimation. Submodular
is the submodular maximization model [20] which focuses
on interestingness and representativeness of frames. DPP
[18] is the determinantal point process which is a non-
parametric summary transfer method. Web-image prior [8]
is the unsupervised learning method using web-image based
prior information. LiveLight model [14] focuses on importance
and interestingness of frames. TVSum framework [10] uses
video titles to find visually important shots. MSDS-CC [42]
optimizes the frame selection in each individual view and
regularizes the view-specific selections towards a consensus
selection.

For the deep learning based methods, vsLSTM [2] uses
LSTMs for sequence modeling and dppLSTM [2] combines
LSTMs and DPP for unsupervised learning. SUM-GAN [31]
is the LSTM-based generative adversarial networks (GAN).
A-AVS and M-AVS [33] apply the attention mechanism to
deep models for video summarization. ERSUM [21] learns a
weighted combination of four properties including importance,
representativeness, diversity, and storyness. SASUM [43] min-
imizes the distance between the generated text description of
the video summary and the ground-truth text description. DR-
DSN [44] builds a reinforcement learning framework in which
the reward function accounts for diversity and representative-
ness.

Our method shows a good performance compared to the
other state-of-the-art methods on both datasets. It demonstrates

TABLE IV
COMPARING TO HUMAN ANNOTATORS.

No. Humans OursWorst Mean Best
#1 17.9 38.2 60.9 41.2
#2 15.5 45.6 73.8 60.2
#3 18.8 59.7 85.5 66.0
#4 4.8 51.1 79.1 53.4
#5 22.9 44.2 61.9 47.1
#6 15.9 43.4 67.6 53.5
#7 27.6 44.5 62.8 58.6
#8 15.3 45.1 78.2 47.0
#9 19.3 50.6 76.4 71.6
#10 22.6 47.2 75.5 32.0
Ave 18.1 47.0 72.2 53.1

that the three-stage spatio-temporal network built with 2D
CNNs, 1D CNNs, and LSTM can successfully generate rea-
sonable video summaries. Technically, our method uses more
types of temporal neural network models including 1D CNNs
and LSTM to model different types of temporal semantic in-
formation, better revealing the complicated structural relations
between videos and summaries. In addition, the proposed user-
ranking method improves the performance on both datasets by
1.9 and 2.0. We will discuss it later in Section V-D.
Qualitative results: Fig. 5 shows some qualitative results
of our method on video ‘Poor Man’s Meals: Spicy Sausage
Sandwich’ of TVSum dataset. The first row is several input
video frames along the timeline. The second row shows the
frame-level importance scores inferred by our method, where
the larger score means more important a frame is. The third
row shows the ground truth summaries created by 20 users,
where black parts denote the frames selected by users and
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TABLE V
PERFORMANCES OF DIFFERENT NETWORK ARCHITECTURES

Method Network Architecture F-score Params (million) Speed (ms)
MLP 3MLP 54.7±2.4 1.05 3.3

LSTM LSTM+2MLP 54.3±3.2 38.81 30.0
MLP+LSTM+2MLP 56.1±2.7 9.45 27.1

CNN 7CNN+2MLP 53.2±1.8 8.84 16.9
MLP+7CNN+2MLP 57.7±2.5 12.05 8.7

combination LSTM+7CNN+2MLP 57.5±1.4 42.46 33.4
7CNN+LSTM+1MLP 60.0±3.1 16.18 17.5

Video
(Uniformly 
Sampled)

LSTM 

 CNN+LSTM 

Ground 
Truth

CNN 

+

+ +

+

+

Fig. 6. Summaries generated by different networks on video ‘Bus in Rock Tunnel’. The first row is the frames uniformly sampled on the original video.
The second row is the ground truth summaries. The third, the forth, and the fifth rows show the summaries generated by CNN, LSTM, and CNN+LSTM,
respectively.

yellow parts denote the frames selected by our method. Note
that the summaries created by different users are largely
inconsistent with each other, and the summary of our method
is in accordance with most of the user summaries. The last
row is several key frames of our summary clearly showing
how to make a spicy sausage sandwich step by step, where
the redundant frames are not included in the summary.
Comparing to Human Annotators: We further compare the
performance of our method to human annotators on TVSum
datasets. For each dataset, we randomly test 20% of the videos
and the rest ones are used for training. Table IV reports the
performance of summaries which are respectively created by
human annotators and our method. In columns of ‘Humans’,
‘Worst’, ‘Mean’, and ‘Best’ respectively denote the worst,
mean, and the best F-score of human-created summaries on a
video. The column of ‘Ours’ is the performance of summary
generated by our method. The bold numbers denote the best
summaries except the ‘Best’ human annotations. Different
from the evaluation setting used in Table III, in Table IV
we compare a summary against the summary computed with
averaged user scores.

Table IV shows the inconsistency among human annotators.
The mean F-scores of human’s average level is 47.0, indicating
that less than half of human-created summary fragments
accord with the averaged preference of humans. It reveals the
severe subjectivity of video summarization task. Compared to
human’s average level, our method performs better on most

videos. It indicates that our method gets close to the human
recognition on video summarization to a certain degree.

C. Analysis on network architectures
In this work, different types of temporal models including

CNN and LSTM are used for building a unified video sum-
marization framework. We further analyze the network archi-
tectures in this section. We compare the 5-fold performance
and the efficiency of several good try network architectures
on TVSum dataset, as shown in Table V. The ‘3MLP’ is
the network of 3 MLP layers. The ‘MLP+LSTM+2MLP’ and
‘MLP+7CNN+2MLP’ respectively add an MLP layer before
LSTM and CNN to reduce the input dimension of them. The
rows of ‘combination’ are the results of combining LSTM
and CNN together. Params is the size of models, and Speed
is the time cost of testing 128 input frames. All the networks
are implemented in a server with a Tesla K40c GPU, 8-core
Intel i7-4790K CPU, and 32GB memory. The inputs of all the
networks are frame-level visual features extracted by the fc6
layer of two-stream VGG network.

In Table V, CNN (53.2) and LSTM (54.3) show similar
performance. Adding an MLP layer before CNN-based net-
work and LSTM-based network significantly improves the
performance and testing speed. It indicates that the first layer
of 1D CNN and LSTM may better accept relatively low-
dimensional input vectors. CNN+LSTM (60.0±3.1) outper-
forms CNN-only method (53.2±1.8) and LSTM-only method
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(54.3±3.2) significantly considering the variance, demonstrat-
ing the temporal representation capability of stacked convolu-
tions in video summarization. CNN+LSTM (60.0) outperforms
CNN-only (53.2), showing the significance of LSTM in such
an architecture combination. Conceptually, the CNN focuses
on capturing the local temporal context, while, the LSTM is
good at capturing the long-range information and the order
of sequence, such that they are well complementary to each
other in sequence encoding. Compared to the combination of
LSTM+CNN (57.5), the combination of CNN+LSTM (60.0)
performs much better, indicating that CNN is appropriate to
be adopted before LSTM for video summarization. This is in
line with the common perspective of speech recognition [37]
and natural language processing [34].

Accordingly, in Fig. 6 we show the summarization results
on the video ‘Bus in Rock Tunnel’ from SumMe dataset. The
video shows a simple story of driving a bus out of the rock
tunnel. The ground-truth summary consists of two video clips,
including a short clip depicting the bus is in a tunnel and a
longer clip depicting the procedure of bus’s moving out. The
summary of 1D CNN does not present the video background
and only shows the video clips with large movements, due
to the local temporal modeling by CNNs. The summary of
LSTM is more similar to the ground-truth summary, while
having a longer clip of the background which is redundant
for users. It is because the LSTM focuses more on the global
modeling. The summary of CNN+LSTM is more reasonable,
which contains a short clip of the background and a longer
clip of the bus’s moving out. This example indicates that
the CNN+LSTM could integrate the global and the local
modeling.

Fig. 7 shows the key frames computed by different neural
networks, where the F-score of each summary is shown at the
end of each row. The frames denoted with purple bounding
boxes are parts of ground truth summaries. The first example
is the video ‘When to Replace Your Tires GMC’, describing
how to check the tires. Although the three networks provide
similar F-scores, their generated key frames are much different
from each other. Most key frames of 1D CNN+LSTM are
critical steps of checking a tire, while, other networks generate
some redundant frames like the headline. The second video is
‘Singapore Parkour Free Running’, telling the story of how a
boy runs to school with parkour skills. The 1D CNN+LSTM
performs better than other networks by large margins, mean-
while, its key frames are more consistent with ground truth
summary. Its second key frame shows an important storyline
of the video, telling that the boy misses metro. Its third
and forth key frame show dynamic and impressive scenes
during parkour. These cases show that the combination of
deep temporal models generates better summaries for videos
of different themes.

D. Evaluation on user-ranking
In this section, we evaluate our proposed user-ranking

method for video sumarization. For qualitative comparison,
Fig. 8 illustrates the importance scores computed with differ-
ent weighting methods, including constant-weighting, linear-
weighting, and log-weighting (described in Eq. 9), on two

‘When to Replace Your Tires GMC’

‘Singapore Parkour Free Running | JC Boy Late for School’ 

  1D CNN+LSTM

  F = 58.6

  1D CNN 

  F = 46.6

  LSTM

  F = 44.5

  1D CNN+LSTM

  F = 71.3

  1D CNN 

  F = 69.6

  LSTM

  F = 68.5

Fig. 7. Key frames extracted by LSTM, 1D CNN, and 1D CNN+LSTM,
respectively. The F-scores are denoted at the right.
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Fig. 8. Frame-level importance scores computed with different weighting
methods on two videos, including conventional scores (black dotted), constant-
weighted average scores (black solid), linear-weighted average scores (green),
and log-weighted average scores (red).

different videos. All of the weighted scores show significant
difference from the conventional scores.

Table VI quantitatively compares the 5-fold performance of
three versions of importance scores, including the conventional
version, the linear-weighted version, and the log-weighted ver-
sion on SumMe and TVSum datasets. The weighted average
methods show better performances and smaller variance than
the conventional method. It demonstrates that the refinement
of ground truth labels is able to improve the performance
of supervised video summarization models. It is also in
line with our motivation of using user-ranking to refine the
supervision labels by alleviating the inconsistency of multi-
user annotations. The log-weighted average score shows the
best mean performance, and, performing well on most of the
folds, indicating that the log-weighting is probably a better
weighting method in this case.

Fig. 9 compares the performance of conventional score and
log-weighted average score with respect to different summary
length ratios from 0 to 0.3. The log-weighted average score
performs better for low length ratios (<0.2). It indicates
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TABLE VI
EVALUATION ON WEIGHTING METHODS

Dataset Weighting #1 #2 #3 #4 #5 Mean

SumMe
conventional 45.6 44.4 50.1 42.7 47.6 46.1±2.9

linear 45.4 44.5 50.7 49.0 44.7 46.9±2.8

log 46.2 47.8 46.2 48.8 51.0 48.0±2.0

TVSum

conventional 59.6 60.3 58.1 56.9 64.9 60.0±3.1

linear 60.6 61.3 58.7 57.2 57.7 59.1±1.8

log 60.3 64.6 60.4 60.5 64.5 62.0±2.3

log(-PR) 60.6 59.3 57.4 59.5 57.6 58.9±1.4
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Fig. 9. Comparison of conventional score and log-weighted score with respect
to different summary length ratios on (a) SumMe dataset and (b) TVSum
dataset. The refinement of ground truth labels makes models generate better
short summaries.

that models based on user-ranking can generate better short
summaries containing the highlights of videos, mainly because
the weighted average score better remains the most important
parts of summarization preference. The log-weighted average
score performs slightly worse for long length ratios, possibly
because the weighted averaging operation discards some useful
information underlying in summaries of low quality users thus
leading to less diverse contents.

VI. CONCLUSION

In this paper, we present a novel video summarization
scheme based on three-stage deep neural networks. The
scheme takes an effective divide-and-conquer strategy for
spatio-temporal modeling and video summarization determi-
nation by sequentially performing 2D CNNs, 1D CNNs, and
LSTM. In addition, we propose a simple yet effective user-
ranking method to tackle the subjectivity problem of multi-
user annotation in video summarization, resulting in more
feasible and reliable ground truth for robust supervised learn-
ing. In experiments, our approach significantly outperforms
the state-of-the-art video summarization methods.
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