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Body Structure Aware Deep Crowd Counting
Siyu Huang, Xi Li, Zhongfei Zhang, Fei Wu, Shenghua Gao, Rongrong Ji, and Junwei Han

Abstract— Crowd counting is a challenging task, mainly due
to the severe occlusions among dense crowds. This paper aims
to take a broader view to address crowd counting from the
perspective of semantic modeling. In essence, crowd counting
is a task of pedestrian semantic analysis involving three key
factors: pedestrians, heads, and their context structure. The
information of different body parts is an important cue to help
us judge whether there exists a person at a certain position.
Existing methods usually perform crowd counting from the
perspective of directly modeling the visual properties of either
the whole body or the heads only, without explicitly capturing
the composite body-part semantic structure information that is
crucial for crowd counting. In our approach, we first formulate
the key factors of crowd counting as semantic scene models.
Then, we convert the crowd counting problem into a multi-task
learning problem, such that the semantic scene models are turned
into different sub-tasks. Finally, the deep convolutional neural
networks are used to learn the sub-tasks in a unified scheme.
Our approach encodes the semantic nature of crowd counting
and provides a novel solution in terms of pedestrian semantic
analysis. In experiments, our approach outperforms the state-of-
the-art methods on four benchmark crowd counting data sets.
The semantic structure information is demonstrated to be an
effective cue in scene of crowd counting.

Index Terms— Crowd counting, pedestrian semantic analysis,
visual context structure, convolutional neural networks.
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I. INTRODUCTION

CROWD counting is a challenging task of accurately
counting the crowds in dense scenes. It has drawn

much attention from researchers because of a series of
practical demands including crowd control and public safety.
As illustrated in the top left of Fig. 1, there is a common
crowd scene. The occlusions among people are severe and the
perspective distortions vary significantly in different areas.
In addition, the crowd distributions are visually diverse. These
difficulties have restricted the performance of existing crowd
counting methods.

In principle, crowd counting seeks for pedestrian seman-
tic analysis involving three key factors: pedestrians, heads
and their context structure. Most existing methods focus on
modelling the visual properties of either the whole pedestri-
ans or the heads only, while ignoring the context structure of
different body parts which is also significant for counting the
crowds. For instance, when we humans count the pedestrians,
we will naturally use the composite body-part semantic struc-
ture information as an auxiliary cue to judge whether a head
seen by us is exactly a pedestrian at that position or something
else. It indicates that the semantic structures of pedestrians
could provide abundant information for recognizing the pedes-
trians. However, many existing detection-based crowd count-
ing methods [1], [2] model the pedestrians by constructing
pedestrian detectors or head-shoulder detectors that they are
limited by the severe occlusions in dense crowds. In more
recent literatures [3], [4], researchers focus on modelling the
density distributions of pedestrians, while, ignoring the body-
part semantic structure information that is essential for the
cognition of human beings.

Motivated by the above observations, we address the crowd
counting problem from the viewpoint of semantic modelling in
this work. The three key factors of crowd counting, including
pedestrians, heads, and their context structure, are formulated
as two types of semantic scene models. The first semantic
scene model is denoted as the body part map in this paper.
It models the visual appearance and context structure of
pedestrian body parts. In body part map, different pedestrian
body parts are formulated as different semantic categories,
in the meantime, the spatial context structure of different parts
are also formulated into the map. Fig. 1 provides an intuitive
illustration of our approach. The body part map is created
based on the single pedestrian parsing model [5], which is
a pre-trained neural network model calculating the semantic
segmentation mask of an input pedestrian image. And then
we merge the segmentation masks of all the pedestrians to
create the body part map. The top right of Fig. 1 shows the
body part map highlighted by the areas of head, body, and
legs respectively with colors of light blue, yellow, and red.
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Fig. 1. Brief illustration of our approach. We build semantic scene models
including the body part map and the structured density map to encode the
semantic nature of a crowd scene. The crowd count is estimated based on the
two semantic scene models.

The second semantic scene model is denoted as the struc-
tured density map in this paper. The conventional density
maps in existing works [3], [6] are proposed to model the
density distributions of crowds, while the shapes of indi-
vidual pedestrians are ignored. Motivated by this, we create
the structured density map according to specific shapes of
individual pedestrians which are provided by the body part
map. As an improvement of the conventional density map,
the structured density map aims to model more fine-grained
semantic structure information and so it can provide more
accurate pixel-wise labels. As illustrated in bottom left of
Fig. 1, the structured density map denotes the density informa-
tion of crowds, meanwhile, preserving the shapes of specific
pedestrians. In summary, the two semantic scene models, body
part map and structured density map, are proposed to encode
the semantic nature of crowd counting and they recover rich
semantic structure information from crowd images.

For the purpose of accurately estimating the count of
pedestrians, we reformulate crowd counting as a multi-task
learning problem. There are three sub-tasks: inferring two
types of semantic scene models and estimating the crowd
count. We build deep convolutional neural networks (CNNs) to
jointly learn these sub-tasks. The CNNs first model the map-
pings from scene image to semantic scene models including
the body part map and structured density map, followed by
calculating the crowd count based on them. The CNNs are
able to extract powerful visual representations from images.
The feature extraction and multi-task crowd counting problem
are addressed in a unified scheme.

We summarize our main contributions as follows:

1) We provide a novel solution for crowd counting in
terms of pedestrian semantic analysis. We formulate
three key factors of crowd counting and model them as
two types of semantic scene models. The models recover
rich semantic structure information from images and are
effective in learning our crowd counting framework.

2) We reformulate the crowd counting problem as a multi-
task learning problem such that the semantic scene

models are converted into its sub-tasks. We present
a unified framework to jointly learn these sub-tasks
based on the CNNs. Experiments show that our method
achieves better results compared to the state-of-the-art
methods.

II. RELATED WORK

We introduce the literatures related to our work in this
section. We first discuss the crowd counting methods proposed
in existing literatures. And then we discuss several related
works on pedestrian semantic analysis, as we address the
crowd counting problem from the viewpoint of pedestrian
semantic modelling in this paper. In addition, we introduce
the background of CNNs, as our crowd counting framework
is built upon the deep neural networks.

A. Crowd Counting

In general, most of the methods for crowd counting can be
grouped into three categories: (1) detection-based, (2) global
regression and (3) density estimation. The earlier literatures of
crowd counting propose the detection-based methods [7]–[9]
to model the semantic structure of pedestrians. Various kinds
of detectors are employed to match individual pedestrians in
images. Li et al. [10] use a HOG based head-shoulder detector
to detect heads within foreground areas. Wu and Nevatia [1]
detect local human body parts by part detectors and combine
their responses to form people detections. Lin and Davis [2]
learn a generic human detector by matching a part-template
tree to images hierarchically. The detection-based methods
perform better in relatively low dense scenes, while, they are
limited by the heavy occlusions in dense crowds. Different
from them, we model the semantic structure of pedestrians as
semantic scene models. They are more robust to learn under
the crowded scene and are more suitable for deep learning
based framework.

To overcome the difficulties of detection-based methods
in high dense scenes, researchers take a different way that
they propose the global regression based methods to learn the
mapping between low-level features and pedestrian counts.
These methods are more suitable for crowded environments
than the detection-based approaches. Diverse kinds of low-
level features are employed, including textures [11]–[13], edge
information [13], [14], and segment shape [12], [15], [16].
In addition, regression algorithms including linear regres-
sion [17], Bayesian regression [13], ridge regression [12],
and Gaussian process regression [15], [18] are commonly
used. The global regression based methods only utilize the
information of pedestrian counts, while, the spatial information
and body structure information of pedestrians are ignored.

To model the spatial information of pedestrians,
researchers [6], [19]–[21] formulate the latent density
distributions of crowds as an intermediate ground truth,
namely, the density estimation based crowd counting.
Lempitsky and Zisserman [6] first generate the density map
based on the annotated points with a 2D Gaussian kernel and
learn a linear regression function between scene image and
density map. Following their work, other density estimation
methods including random forest [22], [23] and deep neural
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networks [3], [4], [24], [25] are proposed. These methods
demonstrate good performance on crowd counting. But
from the perspective of semantic modelling, the body-part
structures of individual pedestrians are ignored in these
approaches. In this work, we focus on analyzing the semantic
nature of crowd counting. We build semantic scene models by
recovering rich semantic structure information from images
and take them as novel supervised labels for crowd counting.

B. Pedestrian Semantic Analysis

The semantic analysis of pedestrian is an important
prerequisite to many practical applications for intelligent
surveillance systems operating in real world environments,
including several typical computer vision topics like pedestrian
detection [26]–[28], pedestrian parsing [5], [29] and crowd
segmentation [30], [31]. In recent years, some high-level
tasks of pedestrian analysis have also drawn much attention
from researchers in recent years, including action recogni-
tion [32], [33], crowd attribute analysis [34], and pedestrian
path prediction [35], [36]. What these approaches have in
common is that they learn and model different aspects of
semantic structure prior of pedestrians.

In this work, we address the crowd counting problem by
focusing on pedestrian semantic analysis, because the visual
cues of pedestrian body-part appearance can provide abundant
information for recognizing the crowds. The success of parts-
based methods [1], [2] on pedestrian detection also demon-
strates this idea. Rather than directly detecting the holistic
pedestrian, the parts-based methods utilize the information of
pedestrian body structure and is able to handle occlusions more
robustly. Different from the conventional parts-based methods,
we formulate the body-part semantic structure of pedestrians
as the semantic scene models in our approach, which are more
suitable for learning under deep neural network framework and
are more effective and robust in dense crowded scenes.

C. Convolutional Neural Networks

Our crowd counting framework is built upon the CNNs.
The CNNs are a popular and leading visual representation
technique, for they are able to learn powerful and interpretable
visual representations [37]–[42]. Specifically, we use the fully
convolutional networks (FCNs) to learn the semantic scene
models proposed in our approach. As a kind of CNN archi-
tecture, FCNs are end-to-end models for pixelwise problems.
They have given the state-of-the-art performance on many
scene analysis tasks, including scene parsing [43]–[45], crowd
segmentation [31] and action estimation [46]. For crowd
counting, Zhang et al. [4] propose a multi-column FCN to
map the crowd image to the density map. Their models are
adaptive to the variations in pedestrian size and achieve the
state-of-the-art performance on the benchmark datasets.

III. OUR APPROACH

A. Problem Formulation

In this work, we aim to address the problem of single
image crowd counting. Given a crowd image X , our goal is
to estimate the pedestrian number C in the image. It can be

TABLE I

THE DETAILED DESCRIPTION OF THE VARIABLES

formulated as a mapping X F−→ C . From the perspective of
semantic modelling, we reformulate the original problem as a
multi-task learning problem that contains three sub-tasks: the
inference of two semantic scene models and the estimation of
pedestrian number. The first semantic scene model is the body
part map B, which is built to model the body-part semantic
structures of pedestrians. The second one is the structured den-
sity map D, which is built to model the density distributions
and shapes of pedestrians. Both two models are data-dependent
that they respectively encode different semantic attributes of
a crowd image. To address the multi-task learning problem,
we build the CNNs to jointly learn the three sub-tasks in a
unified framework. The learning process can be written as

X F1−→ (B,D)
F2−→ C , such that B and D are used as auxiliary

ground truths to better estimate C . For reading convenience,
we summarize a collection of important notations used in this
paper as Table I. We discuss our approach in more details in
the following subsections.

B. Body Part Map

As one of the semantic scene models, the body part map B
is proposed to model the body-part semantic structures of
individual pedestrians, which can serve as an important cue
to judge whether there exists a person at a certain location.
We introduce it into our framework as a novel supervised label
to address the difficulties in crowd counting problem.

The body part map B is generated based on the given
scene image X , perspective map M and the locations of head
points Pi

h . First, we have to obtain single pedestrian images.
Due to the perspective distortions, we use the perspective map
M (given in datasets) to normalize the scales of pedestrians.
The pixel value M(p) denotes the number of pixels in the
image representing one meter at location p in the actual scene.
With the head location Ph = (Px

h , P y
h ) of a person, the top

left corner Ptl and bottom right corner Pbr of the person’s
bounding box are estimated as

Ptl = (
Px

h − α1M(Ph), P y
h − β1M(Ph)

)
,

Pbr = (
Px

h + α2M(Ph), P y
h + β2M(Ph)

)
, (1)
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Fig. 2. Illustration of the semantic scene models. (a) is the scene image.
The red points on (a) denote the annotations of pedestrian heads. (b) is the
body part map. (c) is the conventional density map created by 2D Gaussian
kernels only. (d) is the structured density map generated based on (b) and (c),
modelling both the density information and shape information of individual
pedestrians.

where the parameters are manually set as α1 = 0.5,
α2 = 0.5, β1 = 0.25, β2 = 1.75 in the experiments to
best approximate the actual situations, such that the width of
bounding box is assumed as α1 +α2 = 1 meter and the height
of bounding box is assumed as β1 + β2 = 2 meters in the
actual scene.

After obtaining the pedestrian images, we normalize them
to the same size followed by inputting them into the sin-
gle pedestrian parsing model [5] to calculate their semantic
segmentation masks. The pedestrian parsing model uses a
deep neural network to parse a single pedestrian image into
several semantic regions, including hair, head, body, legs,
and feet. The model is pre-trained that we only use it to
generate the semantic segmentation of pedestrians. We merge
the regions of hair into head, and also merge the regions
of feet into legs. Finally, we resize the semantic masks of
individual pedestrians to their original sizes to create the
body part map B. Fig. 2(a) shows a crowded scene image,
and Fig. 2(b) shows the body part map corresponding to
the scene image. Colors of light blue, yellow, red and dark
blue respectively denote areas of head, body, legs and back-
ground. The body part maps containing labelled pixels of
four categories models the semantic structure of every indi-
vidual pedestrian in the scene images. And they are prepared
for learning our crowd counting framework as discussed in
subsection III-D.

C. Structured Density Map

The structured density map is proposed to capture both the
density distributions and shapes of pedestrians. Different from
the existing crowd counting methods [3], [4], [6], it is data-
dependent in our approach that it is generated according to
specific shapes of individual pedestrians.

We first discuss the conventional density map DN proposed
in existing works [3] . It is usually created by a sum of 2D
Gaussian kernels centered on the locations of pedestrians
as:

DN (p) =
C∑

i=1

1

‖Z‖
(
N i

h(p; Pi
h, σ i

h) + N i
b(p; Pi

b, σ i
b)

)
, (2)

where Nh is a standard 2D Gaussian kernel for modelling the
head part of a pedestrian and Nb is a bivariate 2D Gaussian
kernel for modelling the body part of a pedestrian. p is the
location of a pixel on DN , Pi

h and Pi
b are respectively the i -th

locations of person heads and bodies. In order to approximate
the sizes of head and body in actual scene, we manually set
the variance σh of kernel Nh as σh = 0.25M(Ph), and set the
variance σb of kernel Nb as σbx = 0.25M(Pb) and σby =
M(Pb). The body location Pb is set as Pb = Ph +0.8M(Ph).
‖Z‖ is the normalization factor which normalizes the sum of
density values for each person to 1, such that the sum of
density values for all the persons is the count C . Fig. 2(c)
shows the density map DN corresponding to the scene image
in Fig. 2(a).

Since DN cannot well model the specific shapes of indi-
vidual pedestrians, we further propose the structured density
map D:

DN (p)=
C∑

i=1

1

‖Z‖
(
N i

h(p; Pi
h, σ i

h)+N i
b(p; Pi

b, σ i
b)

)
·Bm(p)

(3)

The pedestrian mask Bm characterizes the shape of each
pedestrian. It is obtained by binarizing the body part map B,
where the pixel values of foregrounds and backgrounds are
respectively set to 1 and 0. The structured density map D is
calculated by the element-by-element multiplication of DN
and Bm , followed by normalization. Fig. 2(d) shows the
structured density map generated by our approach. Compared
to the conventional density map in Fig. 2(c), we can see that
the structured density map not only denotes the latent density
distributions of crowds but also maintains specific shapes of
every individual pedestrian.

D. Multi-Task Crowd Counting Framework

To estimate the accurate pedestrian number C , we refor-
mulate the original crowd counting problem as a multi-task
learning problem including three sub-tasks: the inference of
semantic scene models B and D, and the estimation of
pedestrian number C . To jointly learn these three sub-tasks,
we propose a unified multi-task learning framework based on
the CNNs. See Fig. 3 for an illustration of our framework.
We take a patch-wise strategy in which the input of networks
is an image patch x cropped from scene image X , where x is
constrained to cover a 3-meter by 3-meter square in the actual
scene according to the perspective map M. In conventional
neural network based density estimation method [3], there
is only one stream of the mapping from scene patch x to

density map d: x
Fd−→ d , as illustrated in the blue blocks of

Fig. 3. In our multi-task learning framework, we add another
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Fig. 3. Illustration of the proposed networks. The image patches are cropped from the scene image and are inputted into the CNNs. The convolutional layers
denoted in blue blocks are built to infer the density distributions, and they are trained under the structured density map d with Euclidean loss. The layers
denoted in orange blocks are built to infer the pedestrian body-part structures, and they are trained under the body part map b with Softmax loss. Finally,
the crowd count c is regressed based on the two types of maps with fully connected layers as denoted in green blocks. Best viewed in color.

stream to learn the body part map b of patch x , as illustrated
in the orange blocks of Fig. 3. The outputs of two streams
are concatenated together and are mapped into the pedestrian
count c by fully connected neural networks, as illustrated in
the green blocks. As a whole, our crowd counting framework

can be written as: x
F1−→ (b, d)

F2−→ c. Three supervised labels
b, d , and c jointly train our model.

We discuss more details about the architectures of our net-
works. The networks between patch x and density map d are
fully convolutional networks (FCNs) which contain 7 convolu-
tional layers. The architecture is convd1(9, 32)− poold1(2)−
L RN −convd2(5, 64)− poold2(2)− L RN −convd3(5, 64)−
convd4(3, 128) − convd5(3,128)-convd6(1,256)-convd7(1,1),
where ‘conv’ represents a convolution layer, ‘pool’ represents
a max-pooling layer, and ‘LRN’ represents a local response
normalization layer. Numbers in the parentheses are respec-
tively kernel size and number of channels. Each convolutional
layer is followed by a ReLU activation function and is padded
to keep the same as its last layer. The Euclidean loss is used
to measure the difference between the estimated density map
d and ground truth d̂ , as

Ld = ‖d − d̂‖2
2. (4)

The networks between patch x and body part map b are also
FCNs which contain 9 convolutional layers. The architecture
is convb1(9, 32)− poolb1(2)−L RN−convb2(9, 32)−convb3
(5, 64)− poolb3(2)− L RN −convb4(5, 64)−convb5(5, 64)−
convb6(3, 128) − convb7(3, 128) − convb8(1, 256) −
convb9(1,1). We use a sum of Softmax loss at all
32×32 positions to measure the difference between the
estimated body part map b and ground truth b̂:

Lb = −
32∑

h=1

32∑

w=1

log
exp

(
b̂(h, w)

)

∑4
i=1 exp(b(h, w, i))

, (5)

where b̂(h, w) stands for the output of convb9 layer at
spatial position (h, w) and channel of ground truth category.
b(h, w, i) is the output of convb9 layer at position (h, w) and
i -th channel.

The two outputs d and b are concatenated to the fully
connected layers f c1(512)- f c2(128)- f c3(1) for estimating
the counts c, where fc represents a fully connected layer.
We use Euclidean loss to measure the difference between the
estimated count c and ground truth ĉ, as

Lc = (c − ĉ)2. (6)

The three loss functions Ld , Lb and Lc are combined as a
joint multi-task loss L:

L = Lc + λd Ld + λb Lb. (7)

λd and λb are loss weights respectively set to 10 and 1 in
experiments. The whole network is jointly trained under L by
back propagation and stochastic gradient descent.

Finally, the count C of an entire image is a sum of all
the patch counts c of the image. Because C is composed of
local count information within different areas, we further use
the ground truth count Ĉ of image to fine-tune the count C
predicted by our neural networks, as

Ĉ = Cω + ε. (8)

We employ the linear regression for fine-tuning. The regression
coefficients ω and ε are estimated by the training data. In the
testing phase, we use ω and ε to fine-tune the pedestrian count
which is estimated by the neural networks.

IV. EXPERIMENTS

A. Experimental Setup

We give the details on the networks, datasets, and the
evaluation metric in the following.

1) Networks: We use the popular Caffe toolbox [47] to
implement the proposed deep convolutional neural networks.
Due to the effect of gradient vanishing for deep neural net-
works, it is not easy to learn all the parameters simultaneously.
We use a trick in training phase that we first separately pre-
train the two CNNs of mapping between the patch and two
maps, and then use the pre-trained weights to initialize the
entire CNNs and fine-tune all the parameters simultaneously.
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TABLE II

SUMMARIZATION OF FOUR DATASETS

Fig. 4. Example frames of (a) UCSD dataset, (b) UCF_CC_50 dataset, (c) WorldExpo’10 dataset, and (d) Shanghaitech-B dataset.

TABLE III

MEAN ABSOLUTE ERRORS (MAE) OF THE WORLDEXPO’10 DATASET

The network from patch to body part map is trained for 100K
iterations with a batch size of 100 and learning rate of 10−5.
The network from patch to structured density map is trained
for 100K iterations with a batch size of 100 and learning
rate of 10−4. Finally, the entire network is initialized with
these pre-trained weights and is trained for 300K iterations
with a batch size of 40 and learning rate of 10−5. The input
image patches are uniformly resized to 128×128. For a fair
comparison with other crowd counting methods, we do not
use pre-trained weights of other deep learning models.

2) Datasets: We evaluate our method in four bench-
mark datasets including the WorldExpo’10 dataset [3],
the Shanghaitech-B dataset [4], the UCSD dataset [15] and
the UCF_CC_50 dataset [48]. The details of the four datasets
are summarized in Table II, where Scenes is the number of
scenes; Frames is the number of frames; Resolution is the
resolution of images; FPS is the number of frames per second;
Counts is the minimum and maximum numbers of people
in the ROI of a frame; Average is the average pedestrian
count; Total is the total number of labeled pedestrians. Fig. 4
shows example frames of the four datasets. The scenes, crowd
densities, crowd distributions, and perspective distortions vary
significantly among these datasets such that they can be used
to comprehensively evaluate the crowd counting methods.

3) Evaluation Metric: By following the convention of exist-
ing works [3], [4] for crowd counting, we use the mean
absolute error (MAE) and mean squared error (MSE) to
evaluate the performance of different crowd counting methods:

MAE = 1

N

N∑

i=1

|Ci − Ĉi |, (9)

MSE =
√√
√
√ 1

N

N∑

i=1

(Ci − Ĉi )2, (10)

where N is the number of test images, Ci and Ĉi are respec-
tively the estimated people count and ground truth people
count in the i -th image.

B. WorldExpo’10 Dataset

The WorldExpo’10 dataset [3] contains 1132 annotated
video sequences captured by 108 surveillance cameras, all
from Shanghai 2010 WorldExpo. This dataset provides a
total of 199,923 annotated pedestrians at the centers of their
heads in 3980 frames. The testing dataset includes five video
sequences of different scenes, and each video sequence con-
tains 120 labeled frames. The regions of interest (ROI) and
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Fig. 5. Qualitative results of our method on test scenes of WorldExpo’10 dataset, including (a) scene images, (b) body part maps, (c) density maps, and
(d) head density maps. These maps model the body-part structures and the density distributions of crowds.

perspective maps of scenes are provided for the train and test
scenes.

Table III reports the MAE errors of different methods on
WorldExpo’10 dataset. The results of LBP features based
ridge (RR) regression method are listed at the top row.
Zhang et al. [3] propose the Crowd CNN model to estimate
the density maps and crowd counts of image patches based
on deep neural networks. Results of their model are listed at
the second row. The third row lists the results of the Crowd
CNN model with the scene-specific fine-tuning technique
which utilizes the information of test scenes. Zhang et al. [4]
propose a Multi-column CNN (MCNN) model which uses fil-
ters of different sizes to estimate the geometry-adaptive density
map. Results of their model are listed at the fourth row. The
last row lists the results of our method. Our method achieves
the best performance in terms of average MAE. In scene 3,
4, and 5, our method achieves the best performance compared
with the other methods. It indicates that the semantic structure
information modelled by our method is effective in different
scenes. In scene 2, the performance of our method is relatively

worse, mainly because the crowds of this scene are extremely
dense within small areas such that there are very few body-part
semantic cues. As a comparison, the fifth row lists the results
of our method using conventional density map instead of
structured density map. The introduction of structured density
map makes 11% improvement over conventional density map
for our model.

Fig. 5 shows some qualitative results of our method on the
test scenes of WorldExpo’10 dataset. The figures are respec-
tively the (a) scene images, (b) body part maps, (c) density
maps and (d) head density maps from left to right. In the
body part maps, colors of light blue, green, yellow and dark
blue respectively denote the regions of head, body, legs and
background. The body part maps show that our method can
detect precise pedestrian body parts even under the heavy
occlusions among crowds. The density maps are constructed
to model the density distributions of pedestrians. The head
density maps are inferred based on the body part maps and
density maps, indicating that our method is also able to
predict precise locations and densities of pedestrian heads.
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TABLE IV

COMPARISON OF DIFFERENT METHODS ON THE
SHANGHAITECH-B DATASET

Thus the accurate pedestrian counts are estimated based on
these effective body part maps and density maps.

C. Shanghaitech-B Dataset

The Shanghaitech-B dataset is a part of Shanghaitech
dataset which was first introduced by Zhang et al. [4]. It con-
tains 716 annotated images which are taken from different
cameras at the busy streets of metropolitan areas in Shanghai.
This dataset has a total of 88,488 annotated pedestrians at the
centers of their heads. In this dataset, 400 images are used
for training and 316 images are used for testing. Because
the perspective maps are not provided and the perspective
distortions of scenes are similar among scenes, we manually
create a single perspective map which is used for all the
images.

Table IV reports the MAE and MSE errors of different
methods on the Shanghaitech-B dataset. Following the con-
vention of Zhang et al. [4], we compare our method with
the LBP+RR method, the Crowd CNN method [3], and the
MCNN method [4]. The MCNN-CCR is the MCNN model
trained without the ground truth of the density map. Our
method outperforms the state-of-the-art methods by large
margins in terms of both the MAE and MSE. It indicates that
our method has a good generalization capability over many
different scenes. Compared to MCNN-CCR which is based
on pedestrian count regression, the MCNN method performs
much better because it preserves more density information of
the image. Likewise, our method proves better performance
than MCNN because we further capture the pedestrian body-
part structure information to help improve the count accuracy.

D. UCSD Dataset

The UCSD dataset [15] contains 2000 frames of a single
scene. The video in this dataset is recorded at 10 fps with the
frame size of 158×238. The crowd density of this dataset
is relatively low that there are only about 25 persons on
average in each frame. The annotations of pedestrian head
locations and ROI are provided. Following the convention of
the existing works [4], [15], we use frames 601-1400 as the
training data, and the remaining 1200 frames as the test data.
Since the perspective map is not provided in this dataset and
the perspective distortions of the scene are not severe, we fix
the perspective values of all the pixels to the same.

Table V reports the MAE and MSE errors of our method and
other methods [3], [4], [12], [15], [49], [50]. Four hand-crafted
features based regression methods are compared in Table V,

TABLE V

COMPARISON OF DIFFERENT METHODS ON THE UCSD DATASET

TABLE VI

COMPARISON OF DIFFERENT METHODS ON THE UCF_CC_50 DATASET

including the kernel ridge regression [49], the multi-output
ridge regression [12], the Gaussian process regression [15],
and the cumulative attribute regression [50]. Results of the
CNN based density estimation methods [3], [4] are also listed
in Table V. Our method outperforms both the regression based
methods and the CNN based methods in terms of MAE.
The MSE of our method is a little larger than the MCNN
method, mainly because the multi-size filters proposed in
their methods are more robust for datasets without annotated
perspective values. Except the MCNN method, other methods
including ours do not specifically optimize the perspective
distortions. Our method outperforms these methods by large
margins in terms of both two metrics, because there are
abundant pedestrian body-part information in relatively low-
density scenarios. It also demonstrates the effectiveness of
semantic scene models proposed in this paper.

E. UCF_CC_50 Dataset

The UCF_CC_50 dataset [48] contains 50 images of dif-
ferent scenes. It is very challenging, because of not only the
limited number of images, but also the extremely dense crowds
in images. Following the conventional setting [48], we split the
dataset randomly and perform 5-fold cross validation. Because
of the limitation of the training samples, we randomly crop
1000 patches from each image for training. The perspective
values are fixed as the perspective maps are not provided.

Table VI reports the MAE and MSE errors of our
method and the other methods [3], [4], [6], [19], [48].
Rodriguez et al. [19] propose the density map estimation
to improve the head detection performance in crowd scenes.
Lempitsky and Zisserman [6] learn the density regression
model based on dense SIFT features and the MESA distance.
Idrees et al. [48] estimate the crowd counts based on multi-
source features. The deep learning based approach [3] are
also evaluated on this dataset. Our method performs the
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Fig. 6. Comparison of different ground truths on WorldExpo’10 dataset.

best in terms of MAE, indicating that the semantic struc-
ture information is still effective in extremely dense scenes.
In addition, we also evaluate the performance of our model
without the global fine-tuning operation described as Eq. 8 in
subsection III-D. The results show that the global fine-tuning
operation is able to help improve the performance of the patch-
wise based crowd counting models.

F. The Effectiveness of Different Supervised Labels

There are three different ground truth supervised labels used
in this work, including the structured density map D, the body
part map B and the pedestrian number C . We compares
the effectiveness of themselves in crowd counting, as shown
in Fig. 6. We evenly group the training images and testing
images of WorldExpo’10 dataset into 10 groups according to
increasing pedestrian number. The vertical axis denotes the
MAE error in each group. The black curve represents the
direct regression network trained by C only. The purple curve
represents the network trained by conventional density map
DN and C . The blue curve represents the network trained by
structured density map D and C . The green curve represents
the network trained by B and C . The red curve represents our
whole model which is trained by all the three ground truths
B, D, and C .

The whole model performs the best on both the training set
and test set. It indicates that the joint modelling of different
semantic attributes of crowd images provides an effective
and robust solution for crowd counting. The direct regression
network performs well on the train set but the worst on
the test set. It is in line with our intuition that the crowd
counting model trained by only the count information is short
of generalization capability. On the test set, the body part map
network performs better than the direct regression network,
indicating that the body part map is an effective supervised
label in crowd counting. While, it performs a little worse than
the density map networks, indicating that the density map
may make bigger contribution to our framework than body
part map. In addition, the structured density map performs
better than conventional density map in most cases, indicating
that the structured density map can help improve the crowd
counting performance.

In addition, Fig. 7 shows more qualitative results of our
crowd counting models which are trained by different super-
vised labels. From left to right, the figures are respectively
the scene images, the ground truth body part maps, the body
part maps inferred by our model, and the pedestrian numbers
estimated by different models. The scene images are of the test

Fig. 7. From left to right: scene images, ground truth body part maps, body
part maps generated by our method, and estimated pedestrian numbers. Best
viewed in color.

set of WorldExpo’10 dataset. The body part maps inferred by
our model can well model the body-part semantic structures of
pedestrians in scenes of different crowd densities and diverse
crowd distributions, thus helps estimate the accurate pedestrian
numbers.

V. CONCLUSION

In this paper, we have presented a novel approach to accu-
rately estimate the count of crowds in images. Our approach
has focused on discovering the semantic nature of crowd
counting. We have built two semantic scene models to recover
rich semantic structure information from images. In addition,
we have reformulated the crowd counting problem as a multi-
task learning problem such that the semantic scene models
have been turned into different sub-tasks. We have built the
CNNs to jointly learn these sub-tasks in a unified scheme.
In experiments, our approach has achieved better performance
compared to the state-of-the-art methods on four benchmark
datasets.
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