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Abstract—Existing heterogeneous face synthesis (HFS) meth-
ods focus on performing accurate image-to-image translation
across domains, while they cannot effectively remove the nuisance
facial variations such as poses, expressions or occlusions. To
address such challenges, this paper studies a new practical
heterogeneous prototype learning (HPL) problem. To be specific,
given a face image contaminated by facial variations from
a source domain, HPL aims to reconstruct the variation-free
prototype in a specified target domain. To tackle HPL, we propose
a unified and end-to-end framework named bidirectional hetero-
geneous prototype learning (BHPL). As a bidirectional learning
framework, BHPL is able to simultaneously reconstruct the
heterogeneous prototypes across source-to-target as well as target-
to-source domains. Furthermore, BHPL is capable of learning
the identity prototype features for the contaminated face images
from both source and target domains in order to perform robust
heterogeneous face recognition. BHPL consists of an encoder-
decoder stuctural generator and two dual-task discriminators,
which play an adversarial game such that the generator learns
the identity prototype feature and generates the cross-domain
identity-preserved prototype for each input face image from
both domains, and the discriminators accurately predict face
identity and distinguish real versus fake prototypes. Empirically
studies on multiple heterogeneous face datasets containing facial
variations demonstrate the effectiveness of BHPL.

Index Terms—Face synthesis, heterogeneous prototype learn-
ing, heterogeneous face recognition, adversarial learning.

I. INTRODUCTION

HETEROGENEOUS face synthesis (HFS), i.e., translat-
ing a face image from the source domain to the target
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Fig. 1. Differences between the HPL and the classic HFS problems for NIR-
to-VIS image synthesis. In HFS, the synthesized VIS images still contain
the variations of pose, expressions, or occlusion that exist in the input NIR
images. In HPL, the learned VIS prototypes are variation-free and preserve
the personal identity characteristics in the input NIR images.

domain via image synthesis, has attracted wide attentions
in artificial intelligence security owing to its potential ap-
plications in criminal identification, law enforcement, access
control, digital entertainment, person re-identification, to name
a few [1–15]. To tackle HFS, a number of reconstruction-based
methods [16–20] and deep generative model-based method-
s [21–25] have been developed. Generally, these methods
assume that the input image in the source domain is clean; and
aim at transferring its domain style, e.g., from near infrared
(NIR) to visible spectrum (VIS), while keeping the facial
details unaltered in the target domain.

However, in real-world scenarios, the captured source do-
main face images are probably contaminated by various facial
variations such as expressions, poses, misalignments, and oc-
clusions. In such cases, the existing HFS methods [15–20, 22–
24, 26, 27] simply transfer the domain style of images but
ignore removing the facial variations, thus making the personal
identity of the synthesized image in the target domain hard to
be recognized by forensic experts. Therefore, it is important
to generate an appropriate variation-free prototype1 across the
source-to-target heterogeneous domains to better represent the

1A prototype indicates a frontal face image with neutral expression, under
normal illumination, and without occlusion.
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personal identity. Such a new and practical issue is termed as
heterogeneous prototype learning (HPL). Different from the
classic HFS that simply executes image-to-image translation,
HPL aims to simultaneously remove the facial variations and
preserve the personal identity during domain transferring. For
a better clarification, we take the NIR to VIS image synthesis
as an example and compare HPL with HFS in Fig. 1. It is clear
that the existing HFS methods are unsuitable for HPL, as their
synthesized VIS images would still contain variations such
as pose, expression (e.g., smile), or occlusion (e.g., wearing
glasses) that exist in the input NIR images although the domain
style is transferred. We also find that most existing prototype
learning-based methods [28–31] cannot be directly applied to
HPL as they focus on generating the homogeneous prototypes
in a single domain.

To address HPL, a straightforward idea is to perform domain
transfer and prototype learning sequentially (or vice versa) in
a two-stage process. However, we argue that such naive two-
stage solution is far less satisfactory as the involved two sub-
problems, i.e., prototype learning and domain transfer, are nat-
urally cross-coupled in HPL. Particularly, when a synthesized
face image or learned prototype has certain distortion, such
distortion would be largely magnified when propagating to the
other stage. Consequently, it motivates us to seek a systematic
solution to HPL that is able to solve the two sub-problems
jointly using a unified and end-to-end framework.

In order to learn the heterogeneous prototype across the
source-to-target domains, we advocate treating the source
domain style (e.g., texture) information as a special type of
variation in the input image, while the target domain style
information as a crucial component of the desired learned
prototype. In this manner, we convert the union of the above-
mentioned two sub-problems in HPL into a generalized pro-
totype learning issue. Furthermore, given that the heteroge-
neous prototype learning is bidirectional by nature, i.e., the
mappings between two domains are always coupled, we can
simultaneously learn the prototype across the target-to-source
domains, which could better preserve personal identity through
the opposite learning direction and avoid re-training once the
source and target domains are switched. In this paper, we
therefore propose a unified and end-to-end framework based
on adversarial learning, namely bidirectional heterogeneous
prototype learning (BHPL). As illustrated in Fig. 2, BHPL
consists of an encoder-decoder structural generator and two
dual-task discriminators. The generator G is a symmetric net-
work possessing two pathways, with each having an encoder-
decoder subnet that 1) extracts the identity prototype feature
and 2) generates the cross-domain prototype, from a source
domain (or target domain) contaminated input image. The
two discriminators D and D̃ compete with G to enforce: 1)
the learned identity prototype features from both the source
and target domain input images to encode as much identity
information as possible, which can be applied to perform
heterogeneous face recognition (HFR); and 2) the learned
cross-domain prototype in each pathway is variation-free,
which accurately captures the personal characteristics of the
source domain (or target domain) input image.

To the best of our knowledge, the proposed BHPL is the

first attempt to address the HPL problem using a unified and
end-to-end framework. As a bidirectional learning framework,
BHPL is able to simultaneously learn the heterogeneous proto-
types across the source-to-target as well as the target-to-source
domains. Furthermore, BHPL learns the identity prototype
features for the contaminated face images from both source
and target domains so as to perform HFR. The contributions
of this work are summarized as follows:

• We propose the novel BHPL to address the practical
heterogeneous prototype learning problem, i.e., recon-
structing the variation-free prototype from a contaminated
face image across heterogeneous domains, using a unified
and end-to-end framework.

• We design a symmetric encoder-decoder structural gen-
erator, which simultaneously learns the heterogeneous
prototypes across the source-to-target and the target-to-
source domains. Furthermore, the generator is capable of
learning the identity prototype features of contaminated
face images from both domains.

• We design two adversarial discriminators to assist the
generator in removing the facial variations and meanwhile
preserving the identity information of the contaminated
face images in the generated cross-domain prototypes.

• We conduct extensive experiments on multiple real-world
NIR-VIS, ID-camera, and photograph-sketch heteroge-
neous face datasets, to demonstrate the powerful capa-
bility of BHPL for heterogeneous prototype learning, as
well as the effectiveness of the learned identity prototype
features for HFR.

The reminder of this paper is organized as follows. Sec-
tion II provides an overview of the related works, and Sec-
tion III briefly reviews the generative adversarial network
(GAN). Section IV introduces the proposed BHPL in details.
In Section V, qualitative and quantitative experiments are
conducted on four real-world heterogeneous face datasets
to evaluate the performance of BHPL. In Section VI, we
discuss the generalization ability, universality, and limitations
of BHPL. Finally, we give the conclusion and future works in
Section VII.

II. RELATED WORK

A. Heterogeneous Face Synthesis

HFS aims to generate cross-domain face images and com-
pare them in the same domain. In practice, the domain
style could be light spectrum (e.g., near infrared), artistic
style (e.g., sketch), resolution, etc. Liu et al. [16] firstly
studied this problem and utilized the local linear embedding
(LLE) [32] to preserve the local reconstruction structure dur-
ing face synthesis. Wang et al. [33] employed the Markov
random field (MRF) to characterize the relationships between
neighboring face patches to meet the smoothness requirement.
Xu et al. [34] proposed a cross-spectral dictionary learning
approach to reconstruct pseudo-face images between the NIR
and VIS domains. Subsequently, a series of reconstruction-
based methods [17–20, 35] were developed to synthesize face
image in the target domain based on a pre-defined or learned
source domain patch dictionary.
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Recently, deep learning has seen rapid development and
received increased attention in cross-domain image synthesis,
image matching, and representation learning [36]. Zhang et
al. [37] proposed a fully convolutional network (FCN) with a
joint generative discriminative minimization objective to learn
the photograph-sketch mapping. Lezama et al. [21] adopted
a deep neural network to synthesize VIS images from NIR
images followed by a low-rank embedding enhancement step.
Zhang et al. [10] proposed a deep high-resolution pseudo-
siamese framework for cross-resolution image matching and
achieved state-of-the-art performance. Furthermore, motivated
by the success of GAN [38] in image synthesis and style
transferring, a number of deep generative model-based tech-
niques [2, 22–24, 39] have been proposed to tackle HFS. Isola
et al. [23] released a Pix2Pix software based on conditional
GAN for image translation. Zhu et al. [22] proposed a cycle
consistent GAN (cycle-GAN) to learn heterogeneous face
image across different domains using unpaired training data.
Zhao et al. [27] proposed an adversarial consistency loss-
based GAN (ACL-GAN) for image translation to encourage
the translated images to retain important features of the source
images. Liu et al. [40] proposed an unsupervised image-to-
image translation (UNIT) framework provided that a pair of
corresponding images from different domains can be mapped
to a same representation in a shared-latent space. Fu et al. [2]
proposed a dual generation model to generate massive paired
NIR-VIS images from noise and thus reducing the domain gap
for heterogeneous face recognition. Zhang et al. [39] proposed
a multidomain adversarial learning (MDAL) for photograph-
sketch synthesis by learning the reconstruction process in
each domain. Song et al. [24] incorporated feature learning
into HFS and proposed an adversarial discriminative feature
learning (ADFL) approach that performs adversarial learning
on both spatial and feature spaces.

Lately, Yu et al. [41] developed a pose-preserving cross-
spectral face hallucination framework consisting of an atten-
tion warping module and a mutual information constraint, to
alleviate the misalignment in synthesized images. To better
preserve the texture information, Duan et al. [25] proposed a
pose agnostic cross-spectral hallucination (PACH) framework
by introducing a texture prior synthesis module. Although the
two methods can deal with the misalignments or certain pose
variations during image synthesis, they cannot generalize many
other facial variations such as expressions or occlusions.

B. Prototype Learning

Prototype learning is an emerging hot topic which aims
to reconstruct the prototype (i.e., standard face image) for
a contaminated enrolment sample with facial variations such
as expressions, poses and occlusions. In the literature, there
are two types of prototype learning-based methods [31]: one
is to exploit auxiliary information from query set for image
restoration, the other is to train appropriate mappings between
contaminated and standard samples.

For the former type, Gao et al. [42] and Pang et al. [28]
proposed to estimate the prototypes by the clustering centroid
of the union of the labeled enrolment and unlabeled query sets

via Gaussian mixture model (GMM) [43] or a semi-supervised
low-rank representation. Despite promising prototypes ob-
tained by them, they need to acquire the unknown query set in
advance, which may be impractical from a real-time perspec-
tive. For the latter type, benefiting from the powerful mapping
ability of GAN, a series of GAN variants [29–31, 44] have
been developed to decrease facial variations in contaminated
samples and to synthesize the corresponding identity-preserved
prototypes. Song et al. [29] proposed a geometry-guided GAN
by using fiducial points to guide facial expression transfer
and neutralization. Chen et al. [30] proposed an occlusion-
aware GAN to detect and recover missing regions in occluded
face samples. Huang et al. [44] proposed a two-pathway
GAN to correct the ill-posed samples through both global
and local transformations. More recently, Pang et al. [31]
proposed a general variation disentangling GAN framework
to handle universal facial variations. However, these GAN
variants cannot be applied to HPL because they ignore the
domain differences during prototype generation. By contrast,
our proposed BHPL treats the source domain style information
as a special type of variation while the target domain style
information as a crucial component of the desired learned
prototype. In doing so, BHPL converts HPL into a generalized
prototype learning issue for solving.

III. REVIEW ON GAN
Goodfellow et al. [38] proposed GAN to train a generative

model for image synthesis. It consists of two key components,
i.e., a generator G and a discriminator D, which compete in a
two-player minimax game. The discriminator D is trained to
distinguish between the real image x and the fake generated
image x̂, while the generator G is trained to generate realistic-
looking image, i.e., G(z), based on a random noise vector z to
fool D. x and z are sampled from their respected distributions
pdata and pz , i.e., x ∼ pdata, z ∼ pz . Concretely, the objective
function of GAN is presented as follows:

min
G

max
D

V =Ex[logD(x)] + Ez[log(1−D(G(z)))]. (1)

It has been proved that this minimax game in Eq. (1) has
a global optimum when the distribution of the generated
images approaches to the distribution of the real images [38].
Furthermore, to provide stronger gradients early in learning,
Goodfellow et al. suggested to replace the minimization of
log(1 − D(G(z))) with the maximization of log(D(G(z))).
Therefore, Eq. (1) can be reformulated as follows:

max
D

VD =Ex[logD(x)] + Ez[log(1−D(G(z)))], (2)

max
G

VG =Ez[log(D(G(z)))]. (3)

The discriminator D in Eq. (2) and the generator G in Eq.
(3) are iteratively updated until convergence is achieved or a
predefined maximum number iterations is reached.

IV. THE PROPOSED FRAMEWORK

In this section, we first define the problem and the ob-
jectives. Then, we introduce the architecture of the proposed
BHPL, followed by the training scheme and applications. For
clarity, we summarize some important notations in Table I.
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Fig. 2. Overview of the proposed BHPL. x, y, xrp, yrp, x̂, and ŷ denote the input image from Domain A, the input image from Domain B, the real Domain
A prototype, the real Domain B prototype, the learned Domain B prototype of x, and the learned Domain A prototype of y, respectively. P (x) and P (y)
denote the learned identity prototype features of x and y, respectively. When training D, Did predicts the identity label of y; Dgan assigns a high score
to yrp, and low score to x̂. When training D̃, D̃id predicts the identity label of x; D̃gan assigns a high score to xrp, and low score to ŷ. When training
G, x̂ and ŷ enable Did and D̃id to classify them into the identity labels of x and y, respectively, and fool Dgan and D̃gan to assign them high scores; in
addition, the feature distributions of P (x) and P (y) are aligned in order to reduce their domain discrepancy.

A. Problem Definition
We propose to jointly perform heterogeneous prototype

learning and feature learning for contaminated face images
across domains using a unified and end-to-end framework.

To be specific, suppose a training set consists of Nd

identities from both Domain A and Domain B. The training set
is allowed to be unpaired, i.e., the samples in Domain A and
in Domain B are not one-to-one. Each image x in Domain A
is labeled by lx = {lidx , lvarx }; while in Domain B, each image
y is labeled by ly = {lidy , lvary }. lidx (or lidy ) represents the
face identity of x (or y). lvarx (or lvary ) indicates whether x (or
y) contains arbitrary facial variations. Taking x for example,
if x has a variation (e.g., expression, pose, illumination, or
occlusion), then lvarx = 1; otherwise lvarx = 0. We denote
that each x in Domain A is sampled from the distribution
PdataA, i.e., x ∼ PdataA, and each y in Domain B from
the distribution PdataB , i.e., y ∼ PdataB . Given a testing
contaminated image in Domain A, denoted as xt, and a testing
contaminated image in Domain B, denoted as yt, BHPL aims
to achieve the following two crucial objectives:

• Heterogeneous prototype learning: Learning a proper
Domain B prototype x̂t for xt and Domain A prototype
ŷt for yt, such that x̂t (or ŷt): 1) is variation-free, and 2)
preserves the identity characteristics of xt (or yt).

• Identity prototype feature learning: Learning a discrim-
inative identity prototype feature P (xt) for xt and P (yt)
for yt, such that P (xt) (or P (yt)) represents the identity
of xt (or yt) accurately.

B. BHPL Architecture
We achieve the above two objectives by proposing a joint

heterogeneous prototype learning and feature learning frame-

work, i.e., BHPL, whose architecture is presented in Fig. 2.
BHPL consists of three main modules: an encoder-decoder
structural generator G and two dual-task discriminators D and
D̃. D and D̃ compete with G that enforce: 1) the learned
identity prototype features from both the source and target
domain input images to encode as much identity information
as possible; and 2) the learned cross-domain prototype in each
pathway is variation-free and captures the personal identity
characteristics accurately. In the following, we will introduce
the generator and discriminators in details.

1) Generator G: The generator G is composed of two en-
coders, i.e., GencA and GencB , and two decoders, i.e., GdecA

and GdecB . GencA encodes an identity prototype feature P (x)
for an input Domain A image x; while GencB encodes an
identity prototype feature P (y) for an input Domain B image
y. GdecA and GdecB take the concatenation of P (x) with
the noise z1 and the concatenation of P (y) with the noise
z2 as the inputs, and then generate a Domain B prototype
x̂ = GdecA(P (x), z1) for x, and a Domain A prototype
ŷ = GdecB(P (y), z2) for y, respectively. The noises z1 and
z2 are draw from uniform distribution [−1, 1]Nz .

2) Discriminators D and D̃: The discriminator D is a dual-
task discriminator involving two sub-discriminators, namely
Did and Dgan. To be specific,

1) Did is an identity-related sub-discriminator that outputs
a vector of Nd-dimension for face identity classification.
Nd denotes the total number of training identities.

2) Dgan is a GAN-related sub-discriminator that distin-
guishes the real versus fake prototypes in Domain B. It
assigns a score to the image and a higher score indicates
that the image is closer to the real prototype.
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TABLE I
MEANING OF THE NOTATIONS IN BHPL.

Notation Meaning
x Image in Domain A, x ∼ PdataA

y Image in Domain B, y ∼ PdataB

xrp Real prototype in Domain A, xrp ∼ PrealA

yrp Real prototype in Domain B, yrp ∼ PrealB

lidx /l
var
x The identity/variation label for x

lidy /l
var
y The identity/variation label for y
G The encoder-decoder structural generator

GencA The encoder A in G for x
GencB The encoder B in G for y
P (x) The encoded identity prototype feature of x
P (y) The encoded identity prototype feature of y
GdecA The decoder A in G
GdecB The decoder B in G

x̂ The generated Domain B prototype of x
ŷ The generated Domain A prototype of y

D, D̃ The multi-task discriminators
Dgan, D̃gan The discriminators to distinguish prototypes
Did, D̃id The discriminators to classify face identity

Similar to D, D̃ is also a dual-task discriminator consisting
of two sub-discriminators D̃id and D̃gan. D̃id still outputs a
Nd-dimensional vector for classifying identity labels, while
D̃gan is designed to distinguish real versus fake prototypes in
Domain A.

C. BHPL Training

1) Training of G: For the generator G, it has the following
three objectives:

• Fool Dgan to classify x̂ as real Domain B prototype, and
D̃gan to classify ŷ as real Domain A prototype.

• Enable Did to classify x̂ as the same identity label as x
(i.e., lidx ), and D̃id to classify ŷ as the same identity label
as y (i.e., lidy ).

• Align the feature distributions of P (x) and P (y) to reduce
the domain discrepancy.

By considering all the above objectives, the final objective
function VG for training G is presented as follows:

max
G

VG = V gan
G + α1V

id
G − α2V

dis
G , (4)

where α1 and α2 are two positive trade-off parameters. V gan
G ,

V id
G , and V dis

G are defined as follows:

V gan
G = Ex,y[logD

gan(x̂) + log D̃gan(ŷ)], (5)

V id
G = Ex,y[logD

id
lidx
(x̂) + log D̃id

lidy
(ŷ)], (6)

V dis
G = MMD2(PfeaA,QfeaB), (7)

where Did
i is the i-th element in Did, D̃id

j is the j-th
element in D̃id, PfeaA and QfeaA denote the distributions
of P (x) and P (y), respectively. In Eq. (7), we minimize
the squared maximum mean discrepancy (MMD) distance to
reduce the divergence between PfeaA and QfeaB . This aims
to generate two feature distributions in the latent space that are
identical, and thus force to exclude the domain information.

Theoretically, MMD reaches its global minimum zero if and
only if the two distributions are equal. For more details about
the MMD metric, please refer to [45].

2) Training of D and D̃: Subsequently, according to the
values of lvarx and lvary , we collect standard uncontaminated
face images from Domain A and Domain B in the training
set to construct the real Domain A and real Domain B
prototype corpuses, respectively. We denote each real Domain
A prototype as xrp ∼ PrealA, and real Domain B prototype
as yrp ∼ PrealB .

For the discriminator D = [Dgan, Did], it has the following
two objectives:

• Given the real Domain B prototype yrp and the generated
fake Domain B prototype x̂, Dgan aims to classify yrp

as the real prototype and classify x̂ as the fake one.
• Given the input Domain B image y, Did aims to correctly

predict its identity label lidy .
Formally, the final objective function VD for training D is

max
D

VD = V gan
D + βV id

D , (8)

where β is a positive trade-off parameter, and the sub-objective
functions V gan

D and V id
D are defined as

V gan
D = Eyrp [logD

gan(yrp)]
+ Ex[log(1−Dgan(x̂))], (9)

V id
D = Ey[logD

id
lidy
(y)]. (10)

For the other discriminator D̃ = [D̃gan, D̃id], it also has
two objectives:

• Given the real Domain A prototype xrp and the generated
fake Domain A prototype ŷ, D̃gan aims to classify xrp
as the real prototype and classify ŷ as the fake one.

• Given the input Domain A image x, D̃id aims to correctly
predict its identity label lidx .

Formally, the final objective function VD̃ for training D̃ is

max
D̃

VD̃ = V gan

D̃
+ γV id

D̃
, (11)

where γ is a positive trade-off parameter, and V gan

D̃
and V id

D̃
are defined as

V gan

D̃
= Exrp [log D̃

gan(xrp)]

+ Ey[log(1− D̃gan(ŷ))], (12)

V id
D̃

= Ex[log D̃
id
lidx
(x)]. (13)

The training procedure of BHPL is presented in Algorithm
1. It can be seen that, we alternatively train the generator G,
the discriminator D, and the discriminator D̃ by solving the
objective functions VG in Eq. (4), VD in Eq. (8), and VD̃ in
Eq. (11) iteratively. During the alternative training process, G,
D = [Dgan, Did], and D̃ = [D̃gan, D̃id] will be updated and
improved. To be specific,

• With Dgan and D̃gan being more powerful in distinguish-
ing real versus fake prototypes, G strives for generating
the realistic-looking Domain B prototype x̂ to fool Dgan,
and Domain A prototype ŷ to fool D̃gan.

• Besides, Did enables x̂ to preserve the identity character-
istics of x, and D̃id enables ŷ to preserve the identity
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Algorithm 1 BHPL Training
Input: A training set of Nd identities from Domain A and Domain

B with each image x (or y) annotated by lx = {lidx , lvarx } (or
ly = {lidy , lvary }); A real prototype corpus in Domain A with
each image xrp sampled from the distribution PrealA; A real
prototype corpus in Domain B with each image yrp sampled
from the distribution PrealB .

1: repeat
2: Fix G, update G by solving the objective in Eq. (4)
3: Fix D, update D by solving the objective in Eq. (8)
4: Fix D̃, update D̃ by solving the objective in Eq. (11)
5: until convergence is achieved or a predefined maximum number

of iterations is reached
Output: Trained G, D, D̃

characteristics of y. Furthermore, Did and D̃id guide
GencA and GencB to learn the discriminative identity
prototype features P (x) and P (y) that could encode as
much identity information as possible.

• Moreover, minimizing MMD between PfeaA and QfeaB

further reduces the domain discrepancy.
It is worth mentioning that, BHPL is a bidirectional learning
framework, which could avoid the re-training of the framework
once the source and target domains are switched.

D. BHPL Applications

In testing, we can leverage our trained generator G to
generate heterogeneous prototypes across domains as well as
extract discriminative identity prototype features. Specifically,
we can do the following two tasks:

1) Heterogeneous prototype learning: Generate an ap-
propriate Domain B (or Domain A) prototype for a
contaminated Domain A (or Domain B) face image to
be recognized by forensic experts.

2) Heterogeneous face recognition: Given a Domain B (or
Domain A) query face image and Domain A (or Domain
B) enrolment set, we can obtain their discriminative
identity prototype features and then perform classifica-
tion. For simplicity, in the following experiments, we
adopt a cosine distance-based nearest neighbor classifier
for classification 2.

We will demonstrate the effectiveness of BHPL regarding the
above applications in the subsequent experimental section.

V. EXPERIMENTAL RESULTS

In this section, we first introduce the evaluated datasets,
the implementation details of BHPL, and the parameter set-
tings in Subsection V-A. Subsequently, we qualitatively and
quantitatively evaluate our proposed BHPL by conducting the
following experiments:

1) In Subsections V-B-V-D, we evaluate the learned het-
erogeneous prototypes and features by BHPL on two
NIR-VIS face datasets, i.e., BUAA NIR-VIS and CASIA

2There are some other distance metrics such as l1-distance and l2-distance
that can be used. Through experiments, we observe their performance are
comparable or inferior to that of cosine distance.

（d）

（a）

（c）

（b）

Fig. 3. Example images from four heterogeneous face datasets: (a) BUAA
NIR-VIS; (b) CASIA NIR-VIS v2.0; (c) NJU-ID; (d) CUFSF.

NIR-VIS v2.0, on one ID-camera face dataset, i.e., NJU-
ID, and on one photograph-sketch face dataset, i.e.,
CUFSF, respectively.

2) In Subsection V-E, we make an comparison between
the learned heterogeneous prototypes by BHPL and
the synthesized heterogeneous images by the existing
advanced HFS approaches on the above datasets.

3) In Subsection V-F, we perform ablation study to inves-
tigate the roles of the identity-related sub-discriminator,
GAN-related sub-discriminator, and the the MMD con-
straint on the performance of BHPL.

A. Experimental Setting

1) Dataset Description: BUAA NIR-VIS [46] consists of
150 identities with each having 9 VIS and 9 NIR face images.
In the experiments, a total of 50 identities with 900 images
are randomly chosen as the training set, while the remaining
100 identities with 1800 images as the testing set.

CASIA NIR-VIS v2.0 [47] is the second edition of the
CASIA NIR-VIS dataset. It contains 725 identities with each
having 5-50 NIR face images and 1-22 VIS face images.
We perform experiments using the standard protocol as the
existing methods did. For each fold, we select 360 identities
containing about 2500 VIS and 6100 NIR images for training
and choose another 358 identities as the testing set.

NJU-ID [48] is built for studying the ID-camera face
recognition/verification. NJU-ID consists of 256 identities,
with each having one low-resolution ID card image and one
high-resolution photo image collected from laptop camera. We
randomly select 100 identities for training, while the rest 156
ones are used for testing.

CUFSF [49] is a widely-used viewed sketch dataset for
photograph to sketch synthesis and recognition. It consists of
1194 identities from FERET dataset [50] with each having one
standard photograph and one sketch drawn by an artist. In the
experiments, we adopt two settings to evaluate the learned
heterogeneous prototype and learned identity prototype fea-
ture, respectively. Firstly, we randomly select 200 identities
and expand the photograph size by introducing samples from
five subsets on FERET (bj, bk, bd, bf and bg) including
variations of poses and expressions, thus each identity having 6
photographs and 1 sketch image. We use the first 100 identities
for training while the rest 100 ones for testing. Secondly, we
follow the protocol in [20] to randomly select 550 identities
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TABLE II
THE NETWORK STRUCTURES OF D (OR D̃) AND GdecA (OR GdecB ). F

AND S DENOTE THE FILTER AND STRIDE, RESPECTIVELY.

D or D̃ GdecA or GdecB

Layer F/S Output Size Layer F/S Output Size
FC – 8×8×256

Conv1 3×3/1 128×128×32 DeConv1 3×3/1 8×8×160
Conv2 3×3/1 128×128×64 DeConv2 3×3/1 8×8×256
Conv3 3×3/2 64×64×64 DeConv3 3×3/2 16×16×256
Conv4 3×3/1 64×64×64 DeConv4 3×3/1 16×16×128
Conv5 3×3/1 64×64×128 DeConv5 3×3/1 16×16×192
Conv6 3×3/2 32×32×128 DeConv6 3×3/1 32×32×192
Conv7 3×3/1 32×32×96 DeConv7 3×3/1 32×32×96
Conv8 3×3/1 32×32×192 DeConv8 3×3/1 32×32×128
Conv9 3×3/2 16×16×192 DeConv9 3×3/2 64×64×128
Conv10 3×3/1 16×16×128 DeConv10 3×3/1 64×64×64
Conv11 3×3/1 16×16×256 DeConv11 3×3/1 64×64×64
Conv12 3×3/2 8×8×256 DeConv12 3×3/2 128×128×64
Conv13 3×3/1 8×8×160 DeConv13 3×3/1 128×128×32
Conv14 3×3/1 8×8×320 DeConv14 3×3/1 128×128×3
Pool 8×8/1 1×1×320
FC – Nd+1

TABLE III
DATASET PARTITION AND PARAMETER SETTING.

Dataset
#Training
identity

#Testing
identity

Nd
Trade-off
parameter

BUAA NIR-VIS 50 100 50

α1=β=γ=2
α2=0.1

CASIA NIR-VIS v2.0 360 358 360
NJU-ID 100 156 100
CUFSF (setting 1) 100 100 100
CUFSF (setting 2) 550 644 550

containing 550 photograph-sketch pairs for training while the
rest 644 identities for testing.

For each evaluated dataset, all face images are cropped
to 128×128 pixels. Fig. 3 illustrates some face examples on
BUAA NIR-VIS, CASIA NIR-VIS v2.0, NJU-ID, and CUFSF
four heterogeneous datasets.

2) Implementation Details: For the decoders GdecA and
GdecB , we adopt the CASIA-Net [51] as the backbone, where
batch normalization (BN) and exponential linear unit (ELU)
are used after each conv and deconv layer. D and D̃
both have an extra fully connection (FC) layer based on
CASIA-Net, whose output is a (Nd+1)-dimensional vector for
predicting the face identity and for distinguishing real versus
fake prototypes. For clarity, the network structures of D (or
D̃) and GdecA (or GdecB) are presented in Table II.

For the encoders GencA and GencB , we employ the Light-
ended CNN [52] pretrained on MS-Celeb-1M [53] as the back-
bone for feature extraction. Furthermore, for each evaluated
dataset, we fine tune the Lightened CNN based on the corre-
sponding training set. G extracts two 256-dimensional features
via the two encoders and put them through a FC mapping
layer, to generate the prototype feature P (x) ∈ <256 for x and
P (y) ∈ <256 for y. Subsequently, P (x) is concatenated with
the random noise z1 ∈ <50, and fed to GdecA to generate the
Domain B prototype of x, i.e., x̂; P (y) is concatenated with
the random noise z2 ∈ <50, and fed to GdecB to generate the
Domain A prototype of y, i.e., ŷ.

VIS

NIR

→

GT

(a) BUAA NIR-VIS

VIS

NIR

→

GT

(b) CASIA NIR-VIS v2.0

Fig. 4. Learned heterogeneous NIR prototypes by BHPL from four random
VIS samples on (a) BUAA NIR-VIS and (b) CASIA NIR-VIS v2.0, respec-
tively. Figures from top to bottom are: the input VIS samples, the learned
NIR prototypes, and the groundtruth NIR prototypes.

NIR

VIS

→

GT

(a) BUAA NIR-VIS

NIR

VIS

→

GT

(b) CASIA NIR-VIS v2.0

Fig. 5. Learned heterogeneous VIS prototypes by BHPL from four random
NIR samples on (a) BUAA NIR-VIS and (b) CASIA NIR-VIS v2.0, respec-
tively. Figures from top to bottom are: the input NIR samples, the learned
VIS prototypes, and the groundtruth VIS prototypes.

We optimize the proposed BHPL model 3 by the mini-
batch stochastic gradient descent (SGD) with a mini-batch
size of 5. The maximum number of training epoches is set at
500. All weights are initialized from a zero-centered Normal
distribution with the standard deviation of 0.02. Following the
work in [51], we adopt the Adam optimizer [54] with tuned
hyperparameters for optimizing, where the learning rate and
momentum are set at 0.0002 and 0.5, respectively.

3) Parameter Setting: For the parameter setting, we denote
Nd as the total number of identities in the training set, and
Nz as the dimension of the random noise z1 and z2. The four
trade-off hyper-parameters, i.e., α1 and α2 in Eq. (4), β in Eq.
(8), and γ in Eq. (11), are tuned via grid search. Empirically,
we observe that BHPL achieves promising performance when
α1, α2, β, and γ are set at 2, 0.1, 2, and 2, respectively, and
fix their values across all evaluated datasets. For clarity, we
summarize the parameter settings and the training/testing sets
partition on each dataset in Table III.

B. Evaluation on NIR-VIS Datasets

In this subsection, we evaluate BHPL on two challenging
NIR-VIS face datasets, i.e., BUAA NIR-VIS and CASIA NIR-
VIS v2.0. In the case, we treat VIS domain as Domain A, and
NIR domain as Domain B.
Evaluation on learned prototype. With the trained BHPL
model, we can obtain 1) the heterogeneous NIR prototypes for
the VIS samples and 2) the heterogeneous VIS prototypes for
the NIR samples, respectively. Then, we qualitatively measure
the two types of heterogeneous prototypes. Fig. 4 and Fig.
5 show the learned heterogeneous NIR prototypes from four
random VIS testing samples, and the learned heterogeneous

3The code is released at https://github.com/PangMeng92/BHPL Codes.git.
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TABLE IV
RECOGNITION ACCURACIES (%) OF BHPL AND THE OTHER COMPARED

METHODS ON BUAA NIR-VIS AND CASIA NIR-VIS V2.0
HETEROGENEOUS DATASETS.

Methods
BUAA

NIR-VIS
CASIA

NIR-VIS v2.0

Hand-
crafted

KDSR [55] 83.0 37.5
CDFL [56] – 71.5
H2-LBP3 [57] 88.8 43.8
CEFD [58] – 85.6
KMCM2L [48] – 76.0

Deep
learning

TRIVET [59] 93.9 95.7
IDR [60] 94.3 97.3
ADFL [24] 95.2 98.2
DSU-Nets [61] – 96.3
PACH [25] 98.6 98.9
RGM [62] 97.6 97.2

Ours BHPL 98.8 97.3

TABLE V
RECOGNITION ACCURACIES (%) OF BHPL AND THE OTHER COMPARED

METHODS ON NJU-ID DATASET.

Methods Accuracy (%)

Face synthesis-based
MWF [18] 42.8
Pix2Pix [23] 29.7
RSLCR [20] 43.7

Metric learning-based
AJL-HFR [63] 86.4
DA-JL [64] 89.0

Feature learning-based CAL-HFR [65] 89.4
Ours BHPL 98.1

VIS prototypes from four random NIR testing samples on
each dataset, respectively. For reference, we also present the
groundtruth (GT) NIR or VIS prototypes. From Fig. 4 and
Fig. 5, we have the following key observations:

1) BHPL successfully reconstructs the variation-free NIR
prototypes for the input VIS samples, as well as the
VIS prototypes for the input NIR samples. Intuitively,
for these VIS (or NIR) samples contaminated with facial
variations of expressions (e.g., happiness and surprise),
different poses, or occlusion of glasses, BHPL transfers
the image style from VIS to NIR (or NIR to VIS) domain
and meanwhile decreasing the corresponding variations.

2) For these learned heterogeneous NIR or VIS prototypes
by BHPL, they preserve the personal identity character-
istics well and look close to the groundtruth prototypes
from the visual point.

Evaluation on learned feature. Following the established
setting in the existing HFR methods, we choose one VIS
sample from each identity in the testing set to form the
enrolment set, and use all testing NIR samples in the testing set
for querying. With the trained BHPL model, we can obtain the
identity prototype features for both VIS enrolment and NIR
query samples. Then, we quantitatively evaluate the learned
features by applying them to perform HFR.

In the experiment, we choose 11 NIR-VIS feature learning-
based methods for comparison, including 5 handcrafted feature
learning-based HFR methods, i.e., kernelized discriminative

Camera 
photos

Learned ID card 
prototypes

Groundtruth ID card 
prototypes Domain BDomain A

Fig. 6. Learned ID card prototypes by BHPL from three random camera
photos on NJU-ID. Figures from left to right are: the input camera photos,
the learned ID card prototypes, and the groundtruth ID card prototypes.

Learned camera 
prototypes

ID card 
photos

Reference camera 
photos Domain B Domain A

Fig. 7. Learned camera prototypes by BHPL from three random ID card
photos on NJU-ID. Figures from left to right are: the input ID card photos,
the learned camera prototypes, and the reference camera photos.

spectral regression (KDSR) [55], coupled discriminative fea-
ture learning (CDFL) [56], H2-LBP3 [57], common encoding
feature discriminant (CEFD) [58], and kernelized margin-
based cross-modality metric learning (KMCM2L) [48], and 6
deep learning-based HFR methods, i.e., transfer NIR-VIS het-
erogeneous face recognition network (TRIVET) [59], invariant
deep representation (IDR) [60], ADFL [24], domain specific
units nets (DSU-Nets) [61], PACH [25], and relational deep
feature learning (RGM) [62]. The rank-1 average recognition
accuracies of all the methods on BUAA NIR-VIS and CASIA
NIR-VIS v2.0 datasets are listed in Table IV. We have the
following two key observations:

1) Compared to the traditional handcrafted feature learning
based HFR methods, the deep learning-based HFR meth-
ods usually achieve better recognition performance. This
indicates the good representation learning capability of
deep neural networks.

2) Although our proposed BHPL is not specifically de-
signed for HFR, it obtains comparable results with the
state-of-the-art. Specifically, BHPL achieves the high-
est 98.8% accuracy on BUAA NIR-VIS, and 97.3%
accuracy close to PACH on CASIA NIR-VIS v2.0.
The promising performance of BHPL attributes to three
perspectives: 1) the encoder Lightened CNN based on
Max-Feature-Map is naturally adaptive to different ap-
pearances from different domains [52]; 2) the identity
discriminators Did and D̃id force the learned identity
prototype features to encode the identity information
accurately; 3) the minimization of the MMD divergence
reduces the VIS-NIR domain discrepancy.

C. Evaluation on ID-camera Dataset

With the popularization of face authentication systems in
universities and companies, there is an increasing need to
recognize/verify a degraded ID photo stored in the IC card
against higher-quality photos captured by digital cameras.
In this subsection, we therefore evaluate our BHPL on a
representative ID-camera NJU-ID dataset. Note that NJU-ID is
quite challenging for HPL due to the extreme lack of within-
identity samples. In the case, we treat camera photo domain
as Domain A, and ID card domain as Domain B.
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Photographs Learned sketch 
prototypes

Groundtruth sketch 
prototypes Domain BDomain A

Fig. 8. Learned sketch prototypes by BHPL from three random photographs
on CUFSF. Figures from left to right are: the input photographs, the learned
sketch prototypes, and the groundtruth sketch prototypes.

Learned photograph 
prototypes

Sketches Groundtruth photograph 
prototypesDomain B Domain A

Fig. 9. Learned photograph prototypes by BHPL from three random sketches
on CUFSF. Figures from left to right are: the input sketches, the learned
photograph prototypes, and the groundtruth photograph prototypes.

Firstly, we evaluate the learned heterogeneous prototypes by
BHPL across camera-to-ID and ID-to-camera domains. Fig. 6
and Fig. 7 illustrate the learned ID card prototypes from three
random camera photos, and the learned camera prototypes
from three random ID card photos, respectively. Besides, we
present the groundtruth ID card photo prototypes in Fig. 6, and
the reference camera photos 4 in Fig. 7. It can be observed that
our BHPL not only can generate proper ID card prototypes
to be stored in the IC card based on contaminated camera
photos, but also can restore the degraded low-quality ID card
photos into the higher-quality camera prototypes with richer
facial details. Although there still exist a few artifacts in the
two types of learned heterogeneous prototypes, the identity
characteristics are well preserved across domains.

Secondly, we evaluate the learned identity prototype features
by BHPL for HFR. Following the setting in [64], we use
the camera photos from each identity in the testing set to
form the enrolment set, and the ID card photos in the testing
set for querying. As suggested in [64] and [65], we choose
3 face synthesis-based methods, i.e., markov weight fields
(MWF) [18], Pix2Pix [23], and random sampling with locality
constraint (RSLCR) [20], 2 metric learning-based methods,
i.e., asymmetric joint learning-based HFR (AJL-HFR) [63] and
data augmentation-based joint learning (DA-JL) [64], and 1
feature learning-based method, i.e., coupled attribute learning-
based HFR (CAL-HFR) [65], for comparison, and report the
rank-50 recognition accuracies in Table V. It can be seen that
BHPL achieves the highest recognition accuracy among the
compared methods and even delivers 8.7% improvement over
the second best CAL-HFR. The inspiring results again verify
the effectiveness of the identity prototype feature learning
in BHPL. Besides, compared to the metric learning-based
and feature learning-based methods, the face synthesis-based
methods are less effective because their performance are
limited by the small-scale representation set on NJU-ID.

D. Evaluation on Photograph-sketch Face Dataset

Photograph-to-sketch and sketch-to-photograph prototype
learning can facilitate the applications of digital entertainment

4It is worth mentioning that, some identities in NJU-ID may not have
groundtruth camera photo prototypes.

TABLE VI
RECOGNITION ACCURACIES (%) OF BHPL AND THE OTHER COMPARED

METHODS ON CUFSF DATASET.

Methods Accuracy (%)

Reconstruction-based
MWF [18] 74.2
SSD [35] 70.9
RSLCR [20] 75.9

Deep learning-based FCN [37] 69.8

GAN-based
Pix2Pix [23] 71.4
MDAL [39] 67.1

Ours BHPL 84.5

and criminal identification. In this subsection, we therefore
evaluate our proposed BHPL on a typical photograph-sketch
CUFSF dataset. In the case, we treat photograph domain as
Domain A, and sketch domain as Domain B.

As described in Subsection V-A, we adopt two settings
for evaluation. Firstly, we adopt the first setting to explore
the BHPL’s capability for generating sketch prototypes from
photographs as well as photograph prototypes from sketches.
Secondly, in order to evaluate the learned identity prototype
feature by BHPL for HFR, we follow the setting in the existing
photograph-sketch synthesis-based methods [20, 39] to make
a fair comparison. In this setting, we use the photographs of
all testing identities to construct the enrolment set while the
corresponding sketches as the query set.

Firstly, we illustrate the learned sketch prototypes from three
random photographs in Fig. 8, and the learned photograph
prototypes from three random sketches in Fig. 9, respectively.
Besides, we also present the groundtruth sketch prototypes or
photograph prototypes of the selected identities for reference.
From Fig. 8 and Fig. 9, it can be seen that BHPL can generate
variation-free sketch prototypes from the input photographs
as well as photograph prototypes from the input sketches,
although the artistic styles of the two types of images are
totally different. In addition, most of these learned sketch (or
photograph) prototypes look like the groundtruth sketch (or
photograph) prototypes and maintain some crucial personal
characteristics such as face contour and eye shape of the input
photographs (or sketches). Moreover, we notice that the quality
of the generated photograph prototypes from sketches is not
as good as the generated sketch prototypes from photographs.
This is because that the input sketches usually contain less
facial information compared to the input photographs.

Secondly, for the photograph-sketch HFR experiment, we s-
elect 6 representative photograph-sketch synthesis-based meth-
ods including 3 reconstruction-based methods, i.e., MWF [18],
spatial sketch denoising (SSD) [35], and RSLCR [20], 1 deep
learning-based method, i.e., FCN [37], and 2 GAN-based
methods, i.e., Pix2Pix [23] and MDAL [39], for comparison.
Accordingly, we randomly choose 250 identities containing
250 photograph-sketch pairs in the training set to form the
representation dictionary for the reconstruction-based MWF,
SSD and RSLCR. Moreover, for all the synthesis-based meth-
ods, we adopt the rest 300 identities containing 300 synthe-
sized sketches and corresponding groundtruth sketches in the
training set to train the Null-space linear discriminant analysis
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Fig. 10. Comparison between the learned heterogeneous prototypes by BHPL
and the synthesized heterogeneous images by two advanced HFS methods,
i.e., cycle-GAN and RSLCR, on BUAA NIR-VIS, CASIA NIR-VIS v2.0,
and CUFSF datasets. Figures from the top to bottom rows are: the input
images, the synthesized images by cycle-GAN (or RSLCR), and the learned
prototypes by BHPL.

0.747 0.671 0.761 0.777 0.780
0.610
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BUAA: VIS→NIR BUAA: NIR→VIS CASIA: VIS→NIR CASIA: NIR→VIS CUFSF: Pho→Sketch CUFSF: Sketch→Pho

BHPL cycle-GAN RSLCR

Fig. 11. The preference results of six cross-domain cases on BUAA NIR-VIS,
CASIA NIR-VIS v2.0, and CUFSF datasets. The number in each histogram
indicate the percentages of preference on the comparison pairs of the learned
prototypes by BHPL and the synthesized images by cycle-GAN (or RSLCR).

(NLDA) [66] classifier. We report the rank-1 recognition
accuracies of BHPL and these compared methods on CUFSF
in Table VI, where we observe that BHPL can further boost
the recognition accuracy compared to the other synthesis-based
methods with NLDA classifier. This indicates that the learned
identity prototype features by BHPL could encode more
accurate identity information than the synthesized sketches
or photographs, and again demonstrates the rationality of the
joint prototype and feature learning in our framework. In
addition, we observe that the recognition accuracies of the
GAN-based Pix2Pix and MDAL are not competitive with that
of RSLCR, although the two GAN-based methods have been
shown to synthesize more stylistic sketches or photographs
in the texture manner according to [20, 39]. The plausible
reason is that Pix2Pix and MDAL based on GAN still produce
deformation in the synthesized sketches or photographs as
there is no constraint on the local structure, while RSLCR
imposes an effective locality constraint [67] that preserves the
local reconstruction structure.

E. Comparison with Advanced HFS Approaches

In this subsection, to better reveal the difference between the
newly defined HPL and the classic HFS problems, we make
a comparison between the learned heterogeneous prototypes
by BHPL and the synthesized heterogeneous images by the
existing advanced HFS methods on the above three NIR-VIS
and photograph-sketch datasets. Specifically, for BUAA NIR-
VIS and CASIA NIR-VIS v2.0 datasets, we adopt a represen-
tative GAN-based HFS method, i.e., cycle-GAN [22], for com-
parison; while for the rest photograph-sketch CUFSF dataset,
we use the well-known reconstruction-based RSLCR [20] for
comparison. We randomly choose 10 query samples from the
testing sets of the three evaluated datasets, and then illustrate
the corresponding learned cross-domain prototypes by BHPL

TABLE VII
RECOGNITION ACCURACIES (%) OF BHPL W/O id, BHPL W/O gan, AND

BHPL W/O MMD ON BUAA NIR-VIS DATASET.

Methods Accuracy (%)
BHPL w/o id 58.6
BHPL w/o gan 91.4
BHPL w/o MMD 91.7

and the synthesized images by cycle-GAN (or RSLCR) in
Fig. 10. In the following, we conclude the key observations
and give the analysis:

1) The learned cross-domain prototypes by BHPL are stan-
dardized and contain almost no variations. By contrast,
the facial variations (e.g., expressions and poses) cannot
be effectively removed from the synthesized images by
cycle-GAN or by RSLCR. For example, on BUAA NIR-
VIS and CUFSF, the synthesized VIS (or NIR) images
by cycle-GAN and the synthesized sketch by RSLCR
still contain pose variations; while on CASIA NIR-VIS
v2.0, the mouth areas of the synthesized VIS (or NIR)
images by cycle-GAN from the input images with facial
expressions are blurred.

2) The learned cross-domain prototypes by BHPL generally
have better image quality (e.g., contain fewer artifacts)
than the synthesized images by cycle-GAN on the two
NIR-VIS datasets. The plausible reason is that, unlike
cycle-GAN and the other GAN-based HFS methods
trying to approximate the target distribution of face data
containing diverse variations, BHPL aims to reconstruct
the face prototypes by suppressing the variations, which
could alleviate the overfitting to the variations.

3) Although the reconstruction-based RSLCR can synthe-
size images that capture well the local facial details, e.g.,
hair style and fringe, there still exists serious distortion
in the synthesized sketch from the photograph contain-
ing pose variation. This is because the representation
dictionary on CUFSF lacks the photograph-sketch pairs
possessing the corresponding variations.

Furthermore, we quantitatively compare the quality of the
learned cross-domain prototypes by BHPL and the synthesized
images by cycle-GAN (or RSLCR) by conducting a user study
to ask volunteers to select results that are closer to the real
face prototypes through pairwise comparisons. The preference
results of six cross-domain cases on the above three datasets
are shown in Fig. 11, where we observe that BHPL achieves
higher preference scores than that of cycle-GAN and RSLCR
in call cases we have tried. This implies that the learned
prototypes by BHPL can be easier to be accurately recognized
by humans with naked eyes compared to the direct-translated
images by cycle-GAN or RSLCR.

Overall speaking, the face synthesis and prototype learning
results in the experiments show that the existing GAN-based
and reconstruction-based HFS methods may be unsuitable for
addressing the new HPL problem, and demonstrate the supe-
riority of our proposed BHPL for HPL from both qualitative
and quantitative perspectives.
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x x̂ ŷy

(a) BHPL w/o id

x x̂ ŷy

(b) HPL-GAN w/o gan

Fig. 12. Examples of the learned heterogeneous prototypes by (a) BHPL w/o
id and (b) BHPL w/o gan on BUAA NIR-VIS dataset. Figures from left to
right are: the input VIS sample x, the input NIR sample y, the learned NIR
prototype x̂ for x, and the learned VIS prototype ŷ for y.

F. Ablation Study

In BHPL, there are two types of sub-discriminators, name-
ly identity-related sub-discriminator (Did&D̃id) and GAN-
related sub-discriminator (Dgan&D̃gan). Accordingly, we
construct two variants of BHPL, i.e., BHPL w/o id and
BHPL w/o gan, by removing Did&D̃id and Dgan&D̃gan,
respectively, and then study their roles in prototype learning.
Fig. 12 illustrates two examples of the learned heterogeneous
prototypes by the two BHPL variants on BUAA NIR-VIS
dataset. We can see that, when removing Did&D̃id, BHPL
w/o id can still generate the NIR (or VIS) prototype although
the restored identity is changed; however, when removing
Dgan&D̃gan, BHPL w/o gan cannot even generate visual-
ly effective face prototype, which implies that the GAN-
related sub-discriminator plays a more important role than
the identity-related sub-discriminator in prototype learning.
Furthermore, we study the roles of the two sub-discriminators
and the MMD constraint in identity prototype feature learning.
We list the recognition accuracies of BHPL w/o id, BHPL w/o
gan, and BHPL w/o MMD on BUAA NIR-VIS in Table VII,
where we observe that BHPL w/o id performs worse than that
of BHPL w/o gan and BHPL w/o MMD. We point out that we
also have the same observations on the other heterogeneous
datasets and omit their results for conciseness. The results
indicate that the identity-related sub-discriminator plays more
important role in identity prototype feature learning compared
to the other two components.

VI. DISCUSSION

Generalization ability: BHPL is a generalized prototype
learning framework because it treats the domain style in-
formation as one type of facial variation. Consequently, as
a by-product, the trained BHPL model is also capable of
performing homogeneous prototype learning in a single do-
main (e.g., Domain A→Domain A or Domain B→Domain
B), if the domain style of the input image is exactly the
target one. Specifically, given a testing image xt from Domain

(b)

NIR→NIR

(a)

VIS→VIS Camera→Camera

(c)

ID→ID

(d) (e)

Photo→Photo

(f)

Sketch→Sketch

Fig. 13. Examples of the learned homogeneous prototypes by BHPL across
NIR→NIR, VIS→VIS, camera→camera, ID→ID, photograph→photograph,
and sketch→sketch domains, respectively. Figures from top to bottom rows
are the input images and the corresponding learned homogeneous prototypes
in the same domain.

A and a testing image yt from Domain B, we switch the
input order of the two images by feeding xt into GencB

and yt into GencA. Subsequently, we can acquire the ho-
mogeneous prototype x̃t = GdecB(P (xt), z2) for xt and
ỹt = GdecA(P (yt), z1) for yt, respectively. Fig. 13(a)-(f)
illustrate six examples of the learned homogeneous prototypes
by BHPL across NIR→NIR, VIS→VIS, camera→camera,
ID→ID, photograph→photograph, and sketch→sketch do-
mains, respectively, where we observe that the facial variations
can be successfully removed from the corresponding learned
homogeneous prototypes. It is worth mentioning that, BHPL
can still be trained on a single-domain face dataset to perform
homogeneous prototype learning. Under the circumstances, the
Domain A and Domain B are the same, and BHPL would
degenerate into a specific homogeneous prototype learning
approach similar to [31]. In training, we randomly choose an
image x and an image y from the same training set as the
inputs every time to train BHPL. Fig. 14 illustrates the learned
homogeneous prototypes of multiple random images from the
testing sets of two VIS-based in-the-wild datasets, i.e., labeled
faces in the wild (LFW) [68] and celebrities in frontal-profile
(CFP) [69]. It can be seen that BHPL still generates visually-
appealing homogeneous prototypes for the contaminated input
images containing pose and expression variations in the wild.
Universality: Furthermore, BHPL is designed for disentan-
gling universal variations across domains, as it only constrains
the identity-preserving and variation-free properties of the
learned prototype in the target domain but has no any prior
assumption about the variation’s type in the source domain.
Hence, it is expected that BHPL can be extended to less
constrained or even unconstrained scenarios to handle large
facial variations (e.g., exaggerated expressions, severe light-
ings, large poses, and mixed variations). Fig. 15 illustrates the
learned heterogeneous prototypes by BHPL from multiple test-
ing samples containing large variations on the less constrained
CASIA NIR-VIS v2.0 and NJU-ID datasets, where we observe
that BHPL still achieves promising prototypes for a majority of
these selected tricky samples on both datasets. Although there
is currently no public in-the-wild heterogeneous face dataset
for evaluating BHPL under totally unconstrained environments
across NIR-VIS, camera-card, or photograph-sketch domains,
we conjecture that BHPL can potentially handle some uncon-
strained cases benefiting from its universal design.
Limitations: Although our BHPL has been shown to achieve
promising performance for HPL, there still exist two lim-
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(a) LFW (b) CFP

Fig. 14. Examples of the learned homogeneous prototypes by BHPL on (a)
LFW and (b) CFP datasets. Figures from top to bottom rows are the con-
taminated input images, the corresponding learned homogeneous prototypes
in the same domain, and the reference true prototypes, respectively.

(a)

(b)

(c)

Fig. 15. Heterogeneous Prototype learning results of BHPL under less
constrained scenarios. Good examples are in the green box while the relatively
bad ones are in the red box. The images from top to bottom lines are: (a)
the contaminated input NIR images (or camera photos), (b) the learned VIS
prototypes (or card prototypes) by BHPL, and (c) the reference VIS prototypes
(or card prototypes).

itations we have not addressed. Firstly, we observe that
BHPL sometimes generates nearly the same prototypes for
two (or more) similar input samples of different identities.
One plausible reason is that the generator in BHPL focuses
on generating global consistent prototypes without precisely
preserving some crucial local facial characteristics during face
synthesis. Secondly, in BHPL’s training setting, the training set
requires the Domain A and Domain B sets have the same Nd

identities. This limits the application of BHPL to the scenarios
where the identities of the two domains in the training set are
partially overlapped or even totally independent.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have focused on a new practical HPL
problem, and thus proposed a BHPL framework to tackle it.
To the best of our knowledge, BHPL is the first attempt to re-
construct the cross-domain prototype from a contaminated face
image using a unified and end-to-end framework. Moreover,
BHPL is a joint prototype and feature learning framework
that is able to: 1) learn the heterogeneous face prototypes
across the source-to-target and target-to-source domains, and
2) learn the discriminative identity prototype features for HFR.
Extensive experiments on multiple NIR-VIS, ID-camera, and
photograph-sketch heterogeneous face datasets have demon-
strated the effectiveness of BHPL.

In the future work, we attempt to impose some locality
constraints on the training of the generator, so as to better cap-
ture the identity-related local facial characteristics of the input
samples in the learned heterogeneous prototypes. Furthermore,
we plan to extend BHPL to the more challenging training
scenarios where the identities from the source and target do-
mains are partially overlapped or even totally independent, by
introducing the cycle-consistency module [22]. Subsequently,
for the learned prototypes of the samples from the independent
identities, BHPL borrows the cycle-consistency and identity
mapping losses from cycle-GAN to implicitly preserve the

identity; while for the learned prototypes of the samples from
the overlapped identities, BHPL still adopts the identity-related
discriminator (e.g., Did) to explicitly preserve the identity.
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