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Crowd Counting with Stacked Pooling for Boosting
Scale Invariance
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Abstract—In this work, we take insight into the crowd counting
problem by exploring the phenomenon of cross-scale visual
similarity caused by perspective distortions. It is a quite common
phenomenon in crowd scenarios, suggesting the crowd counting
model to enable a good performance of scale invariance. Existing
deep crowd counting approaches mainly focus on the multi-scale
techniques over convolutional layers to capture scale-adaptive
features, resulting in high computing costs. In this paper, we
propose simple but effective pooling variants, i.e., multi-kernel
pooling and stacked pooling, to take place of the vanilla pooling
layers in convolutional neural networks (CNNs) for boosting the
scale invariance. Specifically, the multi-kernel pooling comprises
of pooling kernels with multiple receptive fields to capture the
responses at multi-scale local ranges. The stacked pooling is
an equivalent form of multi-kernel pooling, while it reduces
considerable computing cost. Our proposed pooling modules do
not introduce extra parameters and can be easily implemented
in practice. Empirical studies on two benchmark crowd counting
datasets show that the proposed pooling modules beat the vanilla
pooling layer in most experimental cases.

Index Terms—Crowd counting, scale invariance, convolutional
neural network, pooling layer.

I. INTRODUCTION

With the vast demands of public safety and city planning,
recent years have witnessed a great development of crowd
counting in visual intelligence. The goal of crowd counting
is to automatically and precisely estimate the number of
pedestrians in crowded scenes. Typically, crowd counting is
cast as a crowd density map regression problem within an
end-to-end learning scheme. In practice, a key insight into
this problem is that effective density map regression requires
capturing the scale-invariant crowd feature information from
perspective distortions. Therefore, we focus on how to build
a simple yet effective deep learning module for boosting the
performance of perspective scale invariance.

As shown in Fig. 1, the crowd image patches from dif-
ferent perspective scales exhibit the mutually similar visual
properties after resizing. This common phenomenon in crowd
counting delivers a fact of the cross-scale visual similarity
in the perspective direction. Hence, an ideal vision model is
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Fig. 1. In dense crowd images, regions of different scales exhibit high visual
similarity if we resize them to certain sizes. This indicates the importance of
scale invariance in crowd counting.

supposed to pursue the goal of scale invariance for pedestrian
number estimation, no matter how a crowd image is resized
to other scales, rather than the scale equivariance for general
vision models [1], [2]. In the context of crowd counting, it is
a common practice to take the strategy of adopting multi-scale
inputs [3] or establishing multi-branch networks [4] to enhance
the scale invariance capability of convolutional neural net-
works (CNNs). For instance, the popular Multi-Column CNN
[5] and its variants [6] adapt multi-sized convolution units to
visual concepts (e.g., heads and pedestrians) of different scales.
In principle, the above-mentioned approaches mainly rely
on the multi-scale techniques over the convolutional layers,
resulting in a higher computational burden.

In contrast, we model the scale invariance by designing
the lightweight scale-aware pooling module for simplicity and
efficiency. So far, the studies of pooling [7], [8], [9] have
revealed the limitations of the existing pooling operations in
coping with significant scale changes [10]. Consequently, it
often suffers from the perspective scale variations in crowd
counting scenarios, as shown in Fig. 1. In this case, a pooling
module with a larger receptive field is likely to adapt to larger
scale variations, and, enabling a stronger scale invariance. Fig.
2 provides an intuitive illustration of how a larger pooling
range enables an invariance with the input going through scale
variations. The feature map after 2×2 max-pooling varies
while the feature map after 4×4 max-pooling presents an
invariance.

In this paper, we propose simple yet effective pooling
variants, i.e., multi-kernel pooling and stacked pooling, to
boost the scale invariance of CNNs. Specifically, the multi-
kernel pooling comprises of pooling kernels with multiple
receptive fields to capture the responses at multi-scale local
ranges, and then, concatenating the feature maps together to
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Fig. 2. An intuitive illustration of the scale invariance brought by a larger
pooling kernel.

its successive layer. Technically, the larger pooling kernels
can provide a wider range of scale invariance for CNNs,
while the fine-grained information is also preserved by smaller
pooling kernels. The stacked pooling is an equivalent form of
multi-kernel pooling by stacking smaller pooling kernels. It
further reduces the computing cost of multi-kernel pooling.
In practice, our proposed pooling modules have the following
advantages:
• Non-parametric: They do not introduce any extra param-

eters and hyper-parameters into the model, ensuring a
high efficiency in learning.

• Simple and flexible: They are succinct and very easy to
implement. They can take place of the vanilla pooling
layer at any time if needed.

Empirically, the multi-kernel pooling and stacked pooling
show favorable performance in comparison with the vanilla
pooling. They beat the vanilla pooling layer in most experi-
mental cases on two benchmark crowd counting datasets. In
addition, studies about pooling kernel sizes and their impact on
the scale variance of CNNs further reveal their effectiveness.

We summarize the contributions of this paper as follows:
• We model the perspective scale invariance in dense crowd

images for effective crowd counting by designing the
lightweight scale-aware pooling module.

• We propose simple and flexible variants of vanilla pooling
layer, i.e., multi-kernel pooling and stacked pooling, to
boost the scale invariance of CNNs and improve crowd
counting performances.

• We empirically demonstrate the effectiveness of our pro-
posed pooling modules and take insight into their impact
on the invariance of CNNs when facing scale variations.

II. RELATED WORK

A. Deep crowd counting

The deep CNNs are currently the state-of-the-art approach
[11], [12], [13], [14], [15], [16] for crowd density estimation
and crowd counting due to their powerful visual representation
abilities.

Specifically to deal with the large scale variations in people
size, in the literature the focus is mainly on the improvement
of convolution units in recent years [4], [17], [18]. For a
typical example, the Multi-Column CNN [5] and Switching
CNN [6] exploited multi-sized convolutional kernels to adapt
CNNs to people of different sizes. Another popular approach
is to transform the scale of the feature map to adapt feature
itself to scale variation. For instance, the Hydra CNN [3]
adopted a pyramid of multi-scale image patches as input such
that each branch of CNN learns the feature representation

for a particular scale of the pyramid. [19] proposed a scale-
consistency regularization constraint to integrate large-scale
and small-scale images.

Different from all of these approaches, this work focuses on
the pooling layer, as it is generally assumed that the pooling
layer enables the scale invariance of CNNs. Motivated by
the significant scale variation in crowd counting, we propose
the multi-kernel pooling to take place of the vanilla pooling
module, aiming at more scale-invariant CNNs.

B. Variants of pooling

Various variants of pooling have been proposed in the
computer vision community [20], [21]. For instance, the well-
known L2 pooling [22], [23] is proposed towards the complex
invariances of CNNs beyond translational invariance. Hybrid
pooling methods [24], [25] combine different types of pooling
together into the a network. Stochastic pooling [26], [27]
randomly picks the activation in each pooling region obeying
a multinomial distribution.

Among variants of pooling, the one most close to this work
is the spatial pyramid pooling (SPP) [28], [29]. SPP employs
multiple pooling filters followed by concatenation, down-
sampling the 2-D feature maps into a fixed-length vector,
where the number of pooling filters is fixed and the size
of each filter is adapted to the image size. Our multi-kernel
pooling is similar to SPP in the manner of fusion of multi-
scale pooling regions, but, differing from it mainly in two
aspects: 1) SPP is proposed for the use of an alternative to
the image cropping and warping operation. Differently, multi-
kernel pooling and stacked pooling are proposed towards a
boost of scale invariance of CNNs; 2) SPP is often adopted
at the top of convolutional layers for the generation of a
fixed-length vector for subsequent fully-connected layers. Our
proposed pooling layers are more general and can replace
the vanilla pooling layers in any CNNs, especially the fully
convolutional networks (FCNs) which are the state-of-the-art
backbone framework for crowd segmentation, density estima-
tion, and counting.

III. OUR APPROACH

The deep CNN based crowd counting models estimate the
pedestrian count in a crowd image by jointly learning the
crowd density map and count. In this work, we improve the
scale invariance of CNNs by introducing very simple yet
effective pooling modules, including multi-kernel pooling and
stacked pooling, to take place of the vanilla pooling layers in
CNNs. Please note that we take the max pooling as an example
in this paper. In practice, our proposed pooling modules are
applicable to the other versions of poolings.

A. Vanilla Pooling

The vanilla max pooling Pk with a kernel size of k can be
formulated as

Pk(z)
def
= max

ż∈κ(z,k)
X(ż) (1)
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Fig. 3. Multi-kernel pooling with a set of kernels {2, 4, 8} and a stride of
2. The three pooling kernels are applied on the input feature map and then
concatenated with element-wise mean.

where z denotes a pixel position on a feature map X ∈
RW×H , and κ(z, k) denotes the square neighbourhood of z
with a side length of k.

By applying pooling Pk on feature map X in a manner of
sliding window (∗), we obtain the feature map after vanilla
pooling layer

Yvanilla = X ∗ Pk (2)

B. Multi-Kernel Pooling

In the practice of deep CNNs, a small pooling kernel,
e.g., k = 2, is commonly used mainly because a larger
pooling kernel may excessively discard information of the
original feature map. However, a larger pooling kernel is able
to provide a wider range of scale invariance for CNNs as
illustrated in Fig. 2. Specifically in crowd counting, image
regions of different scales generally present a high visual
similarity. Thus, in this work we exploit a set of poolings
with different kernel sizes, i.e., multi-kernel pooling, to boost
the scale invariance of a deep crowd counting model.

The multi-kernel pooling enables a kernel set K comprising
of different pooling kernel sizes, such as K = {k1, k2, ..., kn}.
Similar to Eq. 2, we apply the i-th pooling kernel Pki on
feature map X

Yi = X ∗ Pki (3)

There are many ways to concatenate the output feature
maps. In this work we use element-wise mean because: 1)
It keeps the shape of original feature map; 2) It has been
demonstrated to be effective in various deep architectures; 3)
It does not introduce extra learnable parameters. Following Eq.
3, the feature maps are concatenated as

Ymulti-kernel =
1

n

n∑
i=1

Yi (4)

In CNNs, we often use a pooling P(s)
k with a sliding window

stride s ≥ 2 and proper paddings to down-sample a feature
map X ∈ RW×H into ↓s Y ∈ RW

s ×
H
s . The multi-kernel

pooling with a down-sampling rate s is written as

↓sYmulti-kernel =
1

n

∑
k∈K

X ∗ P(s)
k (5)

max pool

2×2, stride 1

max pool
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3×3, stride 1
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⊕

Fig. 4. Stacked pooling with a set of kernels {2, 2, 3}. It is an equivalent
form of multi-kernel pooling shown in Fig. 3 with less computing cost.

TABLE I
TIME COST OF POOLING METHODS (MS). ‘POOL LAYER’ IS A SINGLE

POOLING LAYER. ‘NETWORK’ IS THE VGG-13 NETWORK.

vanilla stacked multi-kernel
pool layer forward 0.11 0.37 0.84

network forward 6.1 6.6 7.7
backward 13.6 14.1 15.7

In theory, the multi-sized pooling kernels incorporate re-
sponses of multiple local areas into the output feature map,
thus providing a wider range of scale invariance for CNNs.
In addition, the fine-grained information is also preserved
by those poolings with smaller kernels. Fig. 3 illustrates an
example of the multi-kernel pooling, where the kernel set
K = {2, 4, 8} and the stride s = 2. In the empirical studies,
this configuration also shows the best performance in most
cases.

C. Stacked Pooling

To reduce the computing cost of multi-kernel pooling, we
propose to use its equivalent form, named stacked pooling.
The stacked pooling is a stack of pooling layers, where the
intermediate feature maps are consecutively computed as

↓s′iY
′

i = Y
′

i−1 ∗ P
(s

′
i)

k
′
i

(6)

Specifically, Y
′

0 = X is the input feature map. Kernel size k
′

i

corresponds to ki with a certain transformation. Stride s
′

i=1 =
s and s

′

i>1 = 1. Following Eq. 6, the output of stacked pooling
concatenates the intermediate feature maps as

↓sYstacked =
1

n

n∑
i=1

↓s′iY
′

i (7)

Fig. 4 shows a diagram of stacked pooling which is exactly
equivalent to the example of multi-kernel pooling shown in
Fig. 3. The stacked pooling is much more efficient than multi-
kernel pooling because its pooling operations are computed on
down-sampled feature maps, except for its first pooling kernel.

Table I summarizes the time cost of different pooling
methods w.r.t a 256×256 input feature map. We see that the
stacked pooling shows a much better computing efficiency
than multi-kernel pooling. On a VGG-13 network [30], the
forward and backward time of stacked pooling is close to that
of vanilla pooling, thus, ensuring its practicability.
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Fig. 5. Density maps. The first row shows the crowd images. From left to right, the images belong to density groups 1 to 5 in ShanghaiTech-A dataset. The
second and the third row are density maps output by Deep-Net with vanilla pooling layers and with stacked pooling layers, respectively. Between density
maps of the two models, there are obvious differences on their sharpness, robustness to noises (image #2, #3, #5), and robustness to scale variations (image
#4, #5).

IV. EXPERIMENTS

A. Datasets and Metrics

In this work, we conduct empirical studies1 on two popular
benchmark crowd counting datasets: ShanghaiTech [5] and
WorldExpo’10 [31], as both datasets are very challenging
due to diverse scene types and varying density levels. More
details of data preparation can be found in the supplementary
material.

We use mean absolute error (MAE) and mean squared error
(MSE) to evaluate the performance of different crowd counting
methods:

MAE =
1

N

N∑
i=1

|Ci − Cgt
i |, MSE =

√√√√ 1

N

N∑
i=1

(
Ci − Cgt

i

)2
(8)

where Ci is the estimated people count and Cgt
i is the ground

truth count of the i-th image. N is the number of test images.
The MAE metric indicates the accuracy of crowd estimation
algorithm, while the MSE metric indicates the robustness of
estimation.

B. Network Architectures

We evaluate our proposed pooling modules2 on different
backbone CNNs. We exploit three types of network architec-
tures, i.e., Base-Net, Wide-Net, and Deep-Net. The Base-Net
is relatively small and it has three variants, namely “S”, “M”,
and “L”, coming from the three columns of Multi-Column
CNN [5] and having different convolutional kernel sizes. The
Wide-Net widens the Base-M Net by using more channels of
feature maps. The Deep-Net follows the well-known VGG-
13 network [30] with slight modifications. We use CNNs of
diverse depths, widths, and convolutional kernel sizes for a

1The implementation is available at https://github.com/siyuhuang/crowdcount-
stackpool

2Unless otherwise specified, we do experiments on stacked pooling as it is
numerically equivalent to multi-kernel pooling with a better efficiency.

comprehensive evaluation of our method. More details of the
backbone architectures can be found in the supplementary
material.

C. Qualitative Results

We qualitatively compare vanilla and stacked pooling by
visualizing the density maps. Fig. 5 shows the density maps
generated by Deep-Net with vanilla pooling layers and stacked
pooling layers, respectively. Although the only difference
between the models is their pooling layers, we can see that
there are obvious differences between density maps of the two
models on the following aspects:
• Sharpness. One main difference lies in the sharpness of

the density maps. The density maps of stacked pooling
are much sharper and clearer, indicating a better fitting
to ground-truth density maps which are often sharp
(Gaussian kernel σ = 4 in our experiments).

• Robustness to noises. For instance, there is an evident
error on bottom of density map #3 of vanilla pooling
due to the dense textures of the woman’s clothes. On top
of density map #5 of vanilla pooling, some chairs are
mistakenly recognized as crowds. The density maps of
stacked pooling avoid these mistakes and present a better
robustness to different types of noises.

• Robustness to scale variations. Within image #4 and #5,
there are severe scale variations among different image
parts. The corresponding density maps of stacked pooling
show more distinct responses on the bottom of images
compared with those of vanilla pooling, indicating that
the network with stacked pooling enables a better robust-
ness to scale variations. It is in line with the motivation
of using stacked pooling.

D. Study on Pooling Kernels

We first empirically study the configuration of pooling ker-
nel set K as shown in Fig. 6. The experiments are conducted

https://github.com/siyuhuang/crowdcount-stackpool
https://github.com/siyuhuang/crowdcount-stackpool
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TABLE II
COMPARISON OF VANILLA POOLING AND STACKED POOLING ON SHANGHAITECH DATASET

Base-S Base-M Base-L Wide Deep

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ShanghaiTech-A

vanilla 142.42 225.21 121.71 192.74 114.66 176.05 122.22 198.23 97.63 153.26
stacked 127.57 197.75 116.06 182.61 118.94 186.19 113.71 181.52 93.98 150.59

ShanghaiTech-B

vanilla 27.64 49.22 29.45 51.88 22.67 39.51 28.21 51.70 21.17 39.20
stacked 22.27 41.45 26.03 46.11 23.47 44.46 26.42 47.69 18.73 31.86

TABLE III
MAE PERFORMANCES ON FIVE TEST SCENES OF WORLDEXPO’10 DATASET

Scene #1 Scene #2 Scene #3 Scene #4 Scene #5 Average

Wide + vanilla 5.01 18.96 14.76 21.36 14.57 14.95
Wide + stacked 4.72 22.62 19.85 14.21 8.43 13.98

Deep + vanilla 4.08 18.74 20.68 23.28 6.84 14.74
Deep + stacked 3.26 12.39 13.97 31.41 3.50 12.92

1 2 3 4 5
Density Group (lower to higher)

0

100

200

M
AE

ShanghaiTech-A

1 2 3 4 5
Density Group (lower to higher)

0

20

40

60

ShanghaiTech-B
kernel 2
kernel 2, 4
kernel 2, 4, 8
kernel 2, 4, 8, 16

Fig. 6. Experiments on kernel sizes of poolings. The MAE, vs. the density
groups from lower density to higher density.

by testing Base-M Net on ShanghaiTech dataset. Four different
kernel sets, including the vanilla pooling kernel {2} and the
multi-kernel pooling kernel sets {2, 4}, {2, 4, 8}, {2, 4, 8, 16},
are evaluated. We group the test images according to ground-
truth pedestrian numbers and show the MAE of density groups
from lower density to higher density.

Fig. 6 shows that the vanilla pooling performs worse
than our multi-kernel pooling on the high density group
of ShanghaiTech-A dataset and also worse on the entire
ShanghaiTech-B dataset. Among the multi-kernel pooling ker-
nel sets, set {2, 4, 8} performs the best with robustness on all
density levels. Therefore, we employ kernel set K = {2, 2, 3}
as the default configuration of stacked pooling in the following
experiments.

E. ShanghaiTech Dataset

We quantitatively compare vanilla pooling and stacked
pooling by adopting them in five different CNN architectures.
Table II shows the empirical results on ShanghaiTech-A and
B, respectively. Stacked pooling obviously outperforms vanilla
pooling by showing a superior performance in most settings
of datasets, network architectures, and metrics. With regard
to datasets, part-A and part-A of ShanghaiTech dataset vary
largely with crowd densities, scenes, and camera perspectives.

With regard to network architectures, the five evaluated net-
works cover the commonly used CNN architectures, from
small to large, and from shallow to deep. With regard to
evaluation metrics, MAE reveals the estimation accuracy of
the model, and MSE reveals the robustness of the model.
The evidences of improvements in these settings indicate that
our stacked pooling module is an effective variant of vanilla
pooling module for crowd counting task.

The performances of Deep-Net with different pooling mod-
ules are what we care the most, because a deep network is
generally effective and most often used in practical crowd
counting applications. Table II shows that the Deep-Net is em-
pirically better than Wide-Net and Base-Nets on ShanghaiTech
dataset. In this work, we down-sample the feature maps in
Deep-Net by three max pooling layers. Experimental results
show that the Deep-Net is 3.7% and 11.5% better under MAE
by adopting stacked pooling than vanilla pooling. In theory,
the stacked pooling does not introduce extra model parameters,
but at the same time, preserving more information during the
down-sampling process, thus benefiting the information flow
in deep layers.

F. WorldExpo’10 Dataset

Table III quantitatively compares the pooling modules on
WorldExpo’10 dataset. MAE results on five different test
scenes are shown respectively. We evaluate the Wide-Net and
the Deep-Net for they are more often used in practice. In
this experiment, the MAEs across different scenes are quite
different due to diverse crowd densities of the scenes. The
Deep-Net still performs better than the Wide-Net w.r.t. the
average MAE. The stacked pooling performs better than the
vanilla pooling w.r.t the average MAE and most of the testing
scenes, indicating that the stacked pooling is as a whole
better than the vanilla pooling for crowd images with diverse
densities and various scenes.
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Fig. 7. Learning curves. The MAE on training and validation sets, vs. the
number of training epochs.

G. Learning Curves

We investigate the training procedure of different pooling
modules by studying their learning curves. Fig. 7 shows the
training and validation MAEs of the trained models at every
epoch, where the learning curves of Base-M Net, Wide-Net,
and Deep-Net are shown from left to right, respectively. For
better viewing, we smooth the learning curves by applying an
exponential moving average (EMA) with a smoothing factor
α = 0.1.

On the training set, the stacked pooling based models show
higher MAEs than the vanilla pooling based models, where the
learning curves of Base-M Net and Wide-Net distinctly show
this result. In machine learning, model performance on training
set generally denotes the fitting degree of a model and the
training set. The vanilla pooling shows a better performance
on training set and worse performance on testing set, indicating
that it has a better fitting capability with a worse generalization
capability, such that it may be easier to get overfitting. The
MAEs of Deep-Net with the two pooling modules are close to
each other after training to convergence, mainly because the
Deep-Net model is deeper and larger with more parameters,
enabling a better fitting capability. In conjunction with Deep-
Net, the stacked pooling also shows a good generalization
performance, demonstrating its practicability in real world
crowd counting scenarios.

V. CONCLUSION

In this work, we have proposed simple, flexible, but effective
variants of vanilla pooling module, i.e., multi-kernel pooling
and stacked pooling, to boost the scale invariance of CNNs and
improve crowd counting performances. The proposed pooling
modules exploit a larger receptive field to enable a stronger
invariance for the significant scale variations in crowd images.
In experiments, the proposed pooling modules are efficient
and easy to implement, showing better performance than the
vanilla pooling layer in most experimental cases on benchmark
crowd counting datasets.
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I. EXPERIMENTAL DETAILS

A. Datasets

In this work, we conduct experiments on two datasets:
ShanghaiTech [1] and WorldExpo’10 [2].
• The ShanghaiTech dataset [1] consists of 1198 images

with 330,165 annotated heads. It contains two parts: Part
A and Part B. Part A consists of 482 images which
are randomly chosen from the Internet, having relatively
larger crowd densities. Part B consists 716 images taken
from the streets of metropolitan areas in Shanghai, having
relatively smaller crowd densities. Part A and Part B
are separately evaluated in our experiments, denoted as
ShanghaiTech-A and ShanghaiTech-B.

• The WorldExpo’10 dataset [2] consists of 1132 annotated
video sequences captured by 108 surveillance cameras. It
contains a total of 199,923 annotated pedestrians in 3980
images.

B. Data Preparation

In each dataset, we randomly split the original training set
into a training set and a validation set by a ratio of 9:1. We
randomly crop 9 patches on each training image, where all the
patches are half the size of the original image. The ground
truth density map is generated by summing a 2D Gaussian
kernel with a fixed σ = 4 centered at every person’s position
[3], [2]. We use a simple method in order to ensure that the
improvements achieved are due to the proposed method and
are not dependent on the sophisticated methods for calculating
the ground truth density maps.

C. Network Architectures

The configurations of backbone network architectures used
in this work are shown in Table I. The convolutional
layer parameters are denoted as “〈kernel size〉*〈kernel size〉,
〈channels〉”. “pooling” denotes a vanilla/stacked max-pooling
layer. The ReLU function and the same padding operation are
added after every convolutional layer. “S”, “M”, “L” represent
small, medium, and large convolutional kernel size versions
of base network respectively.

D. Learning Details

In this work, the CNNs are implemented based on PyTorch
framework [4]. For a fair comparison, we adopt identical

TABLE I
NETWORK ARCHITECTURE CONFIGURATIONS (SHOWN IN COLUMNS).

Base Wide Deep
S M L

input image
5*5, 24 7*7, 20 9*9, 16 7*7, 128 5*5, 64

5*5, 64
pooling

3*3, 48 5*5, 40 7*7, 32 5*5, 256 5*5, 128
5*5, 128

pooling
3*3, 24 5*5, 20 7*7, 16 5*5, 128 3*3, 256
3*3, 12 5*5, 10 7*7, 8 5*5, 64 3*3, 256

pooling
1*1, 1 1*1, 1 1*1, 1 1*1, 1 3*3, 128

3*3, 64
3*3, 32
3*3, 16
1*1, 1

learning settings for vanilla pooling and stacked pooling. The
Base-Net, Wide-Net, and Deep-Net are trained by an Adam
optimizer [5]. The batch size is set as 1 on ShanghaiTech
dataset and set as 32 on WorldExpo’10 dataset to ensure
a comprehensive evaluation with respect to batch size. The
training process runs for 500 epochs on the training set. We
evaluate the checkpoints on the validation set at an interval
of 2 epochs. The model with the best MAE is selected as the
best model used for testing.

II. STUDY ON SCALE INVARIANCE

In the paper, we discuss the scale invariance of CNN
models, and believe that the pooling layer is one of its most
important supporters. Here, we further take some insight into
the scale invariance driven by pooling modules. Specifically,
we evaluate the variation ratio of feature maps after a pooling
layer v.s. the scale variation of an input image. The variation
ratio γ is formulated as

γ =
1

|X |
∑
X∈X

∑
|X̂wh −Xwh|∑
|Xwh|

(1)

X is a feature map within the feature maps X of a CNN model
given an input image. We resize the input image according to a
certain scaling factor β and again calculate the corresponding
feature map followed by resizing the feature map to the same
size of X . |X | is the number of feature map channels. The
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Fig. 1. The scale invariance of poolings. The variation ratio of feature maps,
vs. the number of head counts.

variation ratio γ is used to evaluate the scale invariance of
a CNN model, where a CNN model with a stronger scale-
invariant representation has smaller γ when facing the same
input image of different scales.

We conduct this experiment by applying Base-M Net to
ShanghaiTech-B dataset, where the network is previously
trained on the training set and evaluated on the testing set.
Fig. 1 shows the variation ratio γ of the feature maps after
two respective pooling layers, given the images in the testing
set. An up-sample scaling factor β = 2 is adopted in this
experiment. Large data points (γ > 2) are ignored as outliers.

In Fig. 1, it is distinct that the stacked pooling has a smaller
variation ratio γ than the vanilla pooling w.r.t. both pooling
layers. It indicates that given the same image of different
scales, the stacked pooling layer is able to provide more scale-
invariant feature maps for the subsequent convolutional layers,
i.e., the feature maps are more consistent with the original
feature maps. Such scale-invariant representation improves
the generalization capability of a CNN model, especially for
crowd counting datasets which have high intra-image and
inter-image visual similarities.

It is noticeable that in Fig. 1 the variation ratios γ of
the two pooling modules are closer on low-density images
while exhibiting greater differences on high-density images.
The stacked pooling has much smaller γ than vanilla pooling
on high-density images. It indicates that the stacked pooling
works particularly well at high-density crowd counting cases.
Fig. 5 in the paper also presents this result, where the kernel
set K = {2, 4, 8} performs much better than a single kernel
K = {2} on high-density images.
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