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Abstract—While deep neural networks (DNNs) have been
widely used in various X-ray image analytics tasks such as
classification, segmentation, detection, etc., there frequently needs
to collect and annotate a huge amount of training data to train
a model for every single task. In this work, we proposed a
multitask self-supervised pretraining strategy MTPret to improve
the performance of DNNs in various X-ray analytics tasks.
MTPret first trains the backbone to learn visual representations
from multiple datasets of different tasks through contrastive
learning, then MTPret leverages a multitask continual learning to
learn discriminative features from various downstream tasks. To
evaluate the performance of MTPret, we collected eleven X-ray
image datasets from different body parts, such as heads, chest,
lungs, bones, and etc., for various tasks to pretrain backbones,
and fine-tuned the networks on seven of the tasks. The evaluation
results on top of the seven tasks showed MTPret outperformed a
large number of baseline methods, including other initialization
strategies, pretrained models, and task-specific algorithms in
recent studies. In addition, we also performed experiments based
on two external tasks, where the datasets of external tasks
have not been used in pretraining. The excellent performance
of MTPret further confirmed the generalizability and superiority
of the proposed multitask self-supervised pretraining.

Impact Statement—This work has pushed back the frontiers
of AI-enabled medical image analytics, which is the need for a
large amount of annotated data to train models for different
tasks. The proposed MTPret strategy reduces this need by
leveraging self-supervised pretraining and multitask learning to
improve the performance of DNNs across multiple tasks. The
proposal of using multidataset contrastive learning and multitask
continual learning to pretrain the backbone on multiple datasets
of different tasks is particularly innovative. This approach allows
the network to learn more generalizable features that can be
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applied to a range of downstream tasks, and it also tests the
feasibility of multitask pretraining for large foundational models
of broader medical or clinical interests.

Index Terms—AI for medical image analytics, continual learn-
ing (CL), multitask learning, self-supervised learning.

I. INTRODUCTION

MEDICAL imaging technologies, including computed to-
mography (CT), magnetic resonance imaging (MRI),

and X-ray, have greatly enhanced our ability to detect, diagnose,
and treat diseases at earlier stages [1]. Benefit from the develop-
ment of computer-assisted interventions and machine learning,
the analysis of medical images is no longer limited to interpre-
tation by human experts such as radiologists and physicians, but
adopts computational medical image analytics technology such
as deep neural networks (DNNs) algorithm, which is conducive
to alleviate the potential fatigue of human experts. A large
number of works have indicated that DNN solution can reach
a level similar to that of experienced medical professionals in
a variety of tasks related to analyzing medical images, such as
COVID-19 detection, skeletal abnormality classification, lung
segmentation, tuberculosis (TB) detection, and so on [2], [3].

Several recent works have shown self-supervised learning
(SSL) [4], [5] and multitask learning (MTL) [6], [7] approaches
can effectively improve the performance of DNN in X-ray
image analytics tasks. SSL proposes various pretext tasks that
facilitate feature learning through pseudolabels and utilizes
unlabeled data to acquire underlying representations. On the
other hand, MTL aims to extract valuable information from
multiple related tasks in order to enhance the generalization
performance of all tasks. The combination of these two machine
learning paradigms can further improve the performance of
representation learning [8]. We follow this line of research
and intend to investigate the contribution and significance of
using multitask self-supervised learning algorithms based on
both labeled/unlabeled datasets to improve the performance of
DNNs for X-ray image analytics.

Dong et al. [5] developed a framework for self-supervised
multitask representation learning in sequential 2-D medical
images. The framework utilizes multiple pretext tasks to ex-
ploit underlying structures and improve cardiac segmentation.
Similarly, [9] also combined SSL and MTL to optimize the
performance of quantifying CT image quality. While we have
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seen the power of SSL and MTL for medical image analytics
tasks, they are limited to the same type of task ([5] are limited to
segmentation, while [9] are limited to regression) and tasks exist
in the learning phase. Especially, one could pretrain a powerful
backbone neural networks with multiple datasets through self-
supervised multitask learning, and then transfer the pretrained
backbone to various tasks [10].

In this work, we proposed a promising pretraining strategy,
namely MTPret—a multitask pretraining pipeline based on
self-supervised representation learning for various analytical
tasks in X-ray images, including classification, segmentation
and bounding box (bbox) detection. It pretrained a backbone
on a collection of eleven X-ray image datasets and validated
performance on seven medical analytics tasks. We made con-
tributions as follows.

1) In this work, we investigate the potential of utilizing
self-supervised representation learning to pretrain X-ray
models using multiple datasets and tasks. To the best of
our knowledge, few studies have explored this area [4],
[7], especially by addressing nontrivial technical chal-
lenges in multidataset contrastive learning (e.g., domain
divergence between different X-ray datasets) and multi-
task continual learning (e.g., overfitting and catastrophic
forgetting [11]).

2) We present MTPret uses multiple datasets to train a back-
bone neural network using self-supervised learning and
multitask continual learning techniques. Specifically, on
top of different tasks/datasets MTPret pretrains the back-
bone using task-specific heads, which include fully con-
nected (FC) layers, DeepLab-V3 [12], and FasterRCNN
[13], for the tasks of classification, segmentation, and
abnormality detection, respectively. Generally, MTPret
is with a three-step approach: Given a DNN as a back-
bone neural network, MTPret leverages so-called a) MD-
MoCo to preprocess multiple datasets and pretrain the
backbone using all datasets in self-supervised manner.
Then, MTPret b) pretrains the backbone to learn dis-
criminative features with continual learning (CL) sub-
ject to multiple tasks, while avoiding over-fitting and
“catastrophic forgetting” using advanced transfer learn-
ing techniques [11]. MTPret independently c) fine-tunes
the pretrained backbone on each individual task to obtain
the learning outcomes for the task.

3) We have designed several experiments in detail to validate
this hypothesis, where MTPret pretrains and fine-tunes
the network to adapt all tasks. The evaluation results
demonstrate that MTPret achieved superior performance
compared to backbones pretrained on ImageNet/MoCo
[4] when using ResNet-18 and ResNet-50 as back-
bones. The comparison results confirms the advantage of
MTPret. On the other hand, MTPret does not only work
well on the datasets used for pretraining, it also deliver
good performance for tasks that are out of distribution.
With two external validation experiment, MTPret demon-
strates decent generalization capabilities and can be trans-
ferred to other datasets not involved in pretraining. Please
be advised that the motivation of MTPret is not to provide

a solution to all these X-ray image analysis tasks with
best accuracy, but to study the “proof-of-concept” of self-
supervised multitask learning to improve the performance
of X-ray image analysis through leverage multiple tasks
derived from multiple datasets.

II. MTPRET: FRAMEWORK DESIGN AND LEARNING

ALGORITHMS

In this section, we introduce MTPret, a self-supervised mul-
titask pretraining pipeline. It is constructed from scratch by
effectively utilizing ample unlabeled data for improving X-ray
image representation learning of backbone, then it enables the
backbone to learn discriminative features that are beneficial to
tasks from scarce labeled data.

A. Framework Designs of MTPret

We aim to construct a pretraining pipeline for the deep learn-
ing backbone, to generate feature representations of X-rays
for medical analytics tasks from a large amount of unlabeled
images. While supervised models generally exhibit higher ac-
curacy compared to unsupervised models, they often require
significantly more labeled data. This is particularly challenging
in clinical settings where there may be limited annotated data
but a substantial amount of unlabeled data available. In addition,
we aim to the pretrained backbone learns the similarity and
specificity of representations between different datasets to adapt
to images from different body parts, and learns more knowledge
from different tasks such as classification, segmentation, and
bbox detection to better match those unknown future tasks.

MTPret contributes to generate this solution to achieve the
above goals. It leverages a MoCo paradigm and a large num-
ber of unlabeled image datasets from different body parts
to make the backbone learn the feature representation of
X-rays. To break the limits of the pretext task and contrast self-
supervised loss, and allow the backbone learn those task-related
knowledge, MTPret adds a subpipeline for multitask continual
learning. Specifically, it utilizes limited labeled data to train
task-specific heads, such as FC layer, DeepLab-V3 [12], and
FasterRCNN [14], to learn discriminative features for classi-
fication, segmentation, and bbox detection tasks, respectively.
MTPret finally performs independent and separate fine-tuning
of the pretrained backbone for each task.

B. Multidataset Contrastive Learning

As shown in Fig. 1(a), MTPret adopts momentum contrastive
learning (MoCo) algorithm on aggregated datasets to obtain an
underlying pretrained backbone network, namely MD-MoCo.
Given N X-ray datasets {I = I1, . . . ,IN}, xi ∈ R

d, the goal
of the MoCo task is to find a mapping function F : Rd �→ R

a,
a� d that satisfies

s
(
F (x), F

(
x+

))
� s

(
F (x), F

(
x−)) (1)

where the function s(·, ·) measures image similarity, F is re-
sponsible for representation learning and dimension reduction.
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Fig. 1. Overview of MTPret, consists of three parts: (a) Multidataset
momentum contrastive learning (MD-MoCo). (b) Multitask continual learning.
(c) Fine-tuning on tasks.

Positive and negative samples are denoted as x+ and x−, re-
spectively, with x+ indicating similarity to x and x− indicating
dissimilarity. Especially, the model learns representations by
maximizing agreement between differently augmented views xi

and xj of the same example x using a contrastive loss in the
latent space, and the augmented views xi and xj are generated
from data augmentation DA.

1) Dictionary as a Queue: MoCo trains an encoder to
perform a dictionary lookup task, where a query q and encoded
samples x1, . . . , xk serve as the keys in the dictionary. There-
fore there is a match if the query q is similar to the positive
sample x+, and there is no match in the dictionary for those
negative sample x−. Specifically, MoCo employs two visual
encoders, denoted as fq and fk, to learn query representations
q = fq(xq) and key representations k = fk(xk). Here, xq rep-
resents the query sample, and xk represents the key sample. To
enable the encoder to reuse the previously encoded samples,
MoCo uses the dictionary as a queue. The pretrained model is
trained using a loss function defined as follows:

LContra =− log
exp (q, k+) /τ

exp (q, k+) /τ +
∑

k− exp (q, k−) /τ
(2)

where the τ is a temperature hyperparameter per [15], and k+

and k− denote positive and negative samples, respectively.
2) Momentum Update: MoCo utilizes a momentum update

strategy to update parameters of visual encoders. Denoting
the parameters of fq as θq and those of fk as θk, MoCo up-
dates θq by back-propagation using contrastive loss LContra in
(2) and updates θk by

θk ←mθk + (1 −m)θq (3)

where m ∈ [0, 1) is a momentum coefficient. This updat-
ing strategy makes the evolution of θk smoother compared
to θq [16].

While MoCo has been optimized for natural images and has
been extended for various tasks, there are two problems when
transferring contrastive learning from natural images to multi-
ple data sources X-ray images, including the difference between
natural images and X-ray images, and the inconsistency of
X-ray images from different data sources.

1) Compared to natural images, X-rays have larger gray
scale and similar spatial structures across image, which
are always either anterior-posterior, posterior-anterior, or
lateral. To utilize contrastive learning for X-ray pretrain-
ing, MTPret optimized data augmentation strategies in
contrastive learning. Specifically, certain augmentation
techniques such as random cropping and Gaussian blur-
ring may lead to a change in the disease label or cause
confusion between different diseases. Similarly, color jit-
tering and random grayscale do not offer meaningful
enhancements for grayscale X-rays and hence are dis-
abled by MTPret. This allows for the preservation of the
semantic information in X-rays.

2) For medical images, the imaging process is different
from that of natural images. Imaging parameters in this
imaging process directly affect the quality of imaging,
and result for the inconsistency of X-ray images from
different data sources. To overcome these issues, MTPret
employs certain image preprocessing techniques, such as
normalizing the gray-scale distribution of these datasets
using the Z-score method with the mean of 122.786 and
a standard deviation of 18.390, and resizing the images
to a consistent resolution of 800 × 500.

Algorithm 1 provides the pseudocode of multidataset con-
trastive learning (MD-MoCo) of MTPret.

C. Multitask Continual Learning

As shown in Fig. 1(b), given the backbone pretrained by
MD-MoCo, MTPret continues to learn discriminative features
from different types of medical image analytics tasks based on a
training pipeline of CL. In order to perform multitasks continual
learning on the X-rays effectively, MTPret adopts the following
training procedure and various task-specific training losses.

1) Multitask Training Procedure: Given a set of train-
ing tasks, including classification, segmentation, and detection,
with X-rays collected from different body parts, MTPret trains
a shared DNN backbone with various task-specific heads using
the following training procedure to avoid overfitting and catas-
trophic forgetting in CL.

1) Repeating learning multiple times on a single task tends
to causes the backbone overfits to the current task and
thus lose its ability on other tasks. To avoid it, MTPret
utilizes a strategy of shuffling the task order in each
learning round and employs a cosine annealing learning
rate schedule

ηt = ηimin +
1
2
(ηmax − ηmin)

(
1 + cos

(
t

T
· 2π

))
(4)
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Algorithm 1 Multi-Dataset MoCo
Require: The X-ray datasets I , the batch size N , backbone

modules fk and fq, a head module g, the set of data aug-
mentation functions DA, the dictionary queue qk, the tem-
perature hyper-parameter τ , the image resize parameters
W,H , the parameters of mean value E[I ] and standard
deviation σ (I ) for Z-score normalization;

Ensure: qk := k+ ∪ k−;
1: Normalize I using Z-score: Z = I−E[I ]

σ(I ) ;

2: Re-size image resolution with W and H;
3: for sampled mini-batch {xk}Nk=1 from Datasets I do
4: for k ∈ {1, . . . , N} do
5: Randomly select DA1, DA2 from DA;
6: x̂2k−1 =DA1 (xk) , x̂2k =DA2 (xk);
7: h2k−1 = fk (x̂2k−1) , h2k = fq (x̂2k);
8: z2k−1 = g (h2k−1) , z2k = g (h2k);
9: end for

10: for i ∈ {1, . . . , 2N}, j ∈ {1, . . . , 2N} do
11: Calculate Similarity si,j = z�

i zj/ (‖zi‖ ‖zj‖);
12: end for
13: Update fk to minimize Eq 2;
14: Momentum update fq using Eq. 3;
15: Enqueue qk with z2k−1;
16: Dequeue qk;
17: end for
18: return fk;

where ηt represents the learning rate at the tth iteration,
ηmax and ηmin denote the maximum and minimum learn-
ing rates, and T is the total number of iterations in one
cycle of the cyclic learning rate schedule.

2) Multitask continual learning faces the challenge of
“catastrophic forgetting”, where the backbone may “for-
get” the knowledge learned in previous iterations. To
address this issue, MTPret employs a knowledge transfer
regularization technique based on L2-SP [11]

Ω(w) =
α

2

∥
∥wS −w0

S
∥
∥2

2
+

β

2
‖wS‖

2
2 (5)

where the parameter vector w ∈ R
n consists of all the

network parameters that need to be adjusted for the target
task. Especially, w0 is the parameter vector of the model
pretrained on the source problem, wS is one for the part
of the target network that shares the architecture of the
source network, and wS is the other one for the part that
only exists in the target network. In addition, α and β
are the regularization parameter setting the strength of
the penalty, ‖ · ‖2 is the 	2-norm of a vector. In each
iteration, MTPret adopts regularization to constrain the
distance between the current learning outcome and the
feature extractor that was trained in previous iterations.

Algorithm 2 shows the pseudocode of multitask continual
learning of MTPret.

2) Task-Specific Training Losses: Given multiple medical
image analytics tasks denoted as {T = T1, . . . ,TN}, MTPret

Algorithm 2 Multi-Task Continual Learning
Require: The number of epochs eps, a queue of training

tasks T , a backbone module fk, head modules g =
{gClas, gSeg, gDet}, the schedule of learning rates lr =
{lr1, . . . , lrM}, loss functions L = {Lclas,Lseg,Ldet}

1: for ep ∈ {1, . . . , eps} do
2: Reshuffle task queue T ;
3: for Ti ∈ T do
4: hx(i) = fk

(
x(i)

)

5: Select head gj subject to task Ti;
6: zx(i) = gj (hx(i))
7: Select loss Lj according to task Ti;
8: Update backbone fk to minimize Lj and Eq 2
9: Update learning rate lri using Eq 1

10: end for
11: end for
12: return fk;

makes feature encoding with the same backbone pretrained
by Section II-B, but makes decoding with different head for
specific tasks, e.g., FC Layer for classification task, DeepLab-
V3 [12] for segmentation task and FasterRCNN [14] for bbox
detection task. It allows the pretrained backbone learn these M
tasks one-by-one, and adopts task-specific losses to optimize
the backbone network.

a) Classification task: MTPret adopts CrossEntropyLoss
as the loss function of classification task, which is defined as

LClas =− 1
NClas

∑

i=1

(yi log ŷi + (1 − yi) log (1 − ŷi)) (6)

where NClas is the mini-batch size, y and ŷ denote the ground-
truth and the result that model predicted, respectively. In other
experimental details, MTPret adopts Sigmoid as the activation
function for the binary classification task and the multilabel
classification task, but adopts Softmax for the multiclass clas-
sification task.

b) Segmentation task: MTPret adopts DiceLoss to pro-
cessing segmentation tasks, this loss is defined as

LSeg =
1

NSeg

∑

i=1

(

1 − 2|Ŷi ∩ Yi|+ smooth

|Ŷi|+ |Yi|+ smooth

)

(7)

where Y and Ŷ denote the actual ground-truth and the predicted
mask by the model, respectively, and smooth is a smoothing
hyperparameter.

c) Bbox detection task: For this task, MTPret adopts a
compound loss consisting of two items, a classification loss
Lclas and a regression loss Lreg. Where the Lclas is similar
to (6), and the Lreg is a robust loss function (smooth L1) that
defined as

Lreg = |yi − ŷi| (8)

where ŷ represents the predicted bounding box’s four parame-
terized coordinates, and y represents those of the ground-truth

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2025 at 21:26:28 UTC from IEEE Xplore.  Restrictions apply. 



LIAO et al.: MTPRET: IMPROVING X-RAY IMAGE ANALYTICS WITH MULTITASK PRETRAINING 4803

TABLE I
OVERVIEW OF ELEVEN PUBLICLY AVAILABLE X-RAY IMAGE DATASETS

Datasets Body Part Task Train Validation Test Total
Only used for multidataset contrastive learning of MTPret

China-set-CXR [17] Chest N/A 661 N/A N/A 661
Montgomery-set-CXR [17] Chest N/A 138 N/A N/A 138
Indiana-CXR [18] Chest N/A 7470 N/A N/A 7470
RSNA bone age [19] Hand N/A 10 811 N/A N/A 10 811

Used for multidataset contrastive learning or model validation of MTPret

NIHCC [20]
Chest N/A 112 120 N/A N/A 112 120

Chest
Multilabel classification

of pathology 78 484 11 212 22 424 112 120

Used for all phase of MTPret

Pneumonia [21] Chest
Binary classification

of pneumonia 4686 585 585 5856

MURA [22] Various Bones
Binary classification
of abnormal skeleton 32 013 3997 3995 40 005

Chest X-ray... [17] Chest Segmentation of lung 718 89 89 896

TBX [23] Chest
Detection

of tuberculosis 640 80 80 800

Only used for external validation of MTPret

CheXpert [24] Chest
Multilabel classification

of pathology 223 414 234 N/A 223 648

DeepCovid [2] Chest
Binary classification

of COVID 2084 3100 N/A 5184

Total N/A N/A N/A N/A N/A 424 746

box associated with a positive anchor. Finally the detection loss
is defined as follows:

LDet =
1

Nclas

∑

i=1

Lclas (pi, p̂i) + λ
1

Nreg

∑

i=1

piLreg (yi, ŷi) (9)

where p̂i represents the predicted probability that anchor i cor-
responds to an object. The true label pi for the anchor is 1 if it is
positive and 0 if it is negative. The regression loss term piLreg

is applied exclusively to positive anchors (pi = 1), while it is
disregarded for negative anchors (pi = 0).

D. Fine-Tuning on Tasks

Finally, after pretraining the backbone using the two stages
mentioned above, MTPret combines the backbone with FC
Layer for classification tasks, DeepLab-V3 [12] for segmen-
tation tasks, and FasterRCNN [14] for bbox detection tasks,
then fine-tunes the whole model on each task independent and
separately, as shown in Fig. 1(c).

III. EXPERIMENT AND EVALUATION RESULTS

In this section, we detail the design of our experiments,
including data collection and data distribution, some base-
lines algorithm and other initialization settings, detailed setup
of the experiment and comparison with recent works, then
we present the results of our algorithms in comparisons with
other baselines.

A. Datasets Collection and Preparation

Table I reports the datasets collection used in this study.
A large set of X-ray images are collected from eleven open
source datasets, including China-Set-CXR [17], Montgomery-
Set-CXR [17], Indiana-CXR [18], RSNA Bone Age [19],
NIHCC [20], Pneumonia [21], MURA [22], Chest X-ray Masks

and Labels [17], TBX [23], CheXpert [24], and Deep-Covid [2].
A total of 424 746 X-rays cover several parts of the human body,
including the chest, hand, elbow, finger, forearm, humerus,
shoulder, and wrist. Based on these datasets, MTPret developed
a rigorous experimental plan to use these data for learning
and validation.

MTPret first puts all data from China-Set-CXR [17],
Montgomery-Set-CXR [17], Indiana-CXR [18], RSNA Bone
Age [19], NIHCC [20] and partial data from Pneumonia [21],
MURA [22], Chest X-ray Masks and Labels [17], TBX [23]
to the Section II-B. It is worth mentioning that contrastive
learning, as an unsupervised network, does not require any la-
beling information at that phase. Then MTPret carefully selects
some X-ray analytics tasks from these datasets to put in the
Section II-C, these task include pneumonia classification task
on Pneumonia [21], skeletal abnormality classification task on
MURA [22], lung segmentation task on Chest X-ray Masks
and Labels [17], and tuberculosis bbox detection task on TBX
[23]. To avoid data leakage, for these four datasets, MTPret
uses the same data and data corresponding label information
in this phase as in the previous phase. (Note: Some of X-rays
from these four datasets were also used in the first phase, and
both phases have remaining data that have not been learned by
the model and are available for subsequent model validation.)
Finally, MTPret fine-tunes the backbone by utilizing the pre-
trained weights as the initial point, and adapting its own task-
specific head to separately fit each of the seven tasks, including
four tasks that appeared in the previous Section II-C, pulmonary
disease classification tasks on NIHCC [20] and CheXpert [24],
and COVID classification task on Deep-Covid [2].

B. Baselines Algorithms

We evaluated the performance of MTPret on above seven
tasks and compare with initialization strategies as follows.
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Fig. 2. Pipeline shared by MTPret and baselines, where the red arrows
indicate MTPret.

1) Scratch: the models are all initialized using Kaiming’s
random initialization [25] and fine-tuned on the target
datasets.

2) ImageNet: the models are initialized with the weights
pretrained on the ImageNet [26] dataset that are officially
released, and then fine-tuned on the target datasets.

In addition to the above initialization strategies, we also use
each individual step of MTPret and their variants/alternatives as
baseline algorithms. These baseline models undergo a detailed
validation process by progressively modifying or removing
relevant modules of MTPret. This stepwise approach aims to
assess the significance of each individual step in MTPret. Fig. 2
presents the pipelines shared by all baseline algorithms and
MTPret, where the combinations of different modules configure
the above algorithms.

1) MD-MoCo: The models undergo pretraining using multi-
dataset MoCo with initialization from Kaiming’s method
[25], and then fine-tuned accordingly;

2) SD-MoCo: It changes multidataset MoCo to single-
dataset MoCo in MD-MoCo to provide proof that the
backbone is able to learn more favorable feature repre-
sentations of X-rays from multiple data sources;

3) MD-MoCo++: It changes Kaiming’s initialization [25]
to ImageNet initialization [26] in MD-MoCo, this trick
observes the proposal of [4];

4) SD-SimCLR and MD-SimCLR: It changes MoCo [16] to
SimCLR [27], another contrastive self-supervised solu-
tion that has performed well on ImageNet [26]. On the
one hand, this set of control experiments can search a
more superior contrastive learning strategy on X-ray im-
ages, and on the other hand, it can reaffirm the superiority
of multidatasets pretraining; and

5) MTPret−−: All models are pretrained and fine-tuned with
MTPret but without the use of cross-task memorization
and cyclic and reshuffled learning schedule.

To ensure a fair comparison, all baseline models employ
identical training/evaluation code and experimental hyperpa-
rameters. During the pretraining phase, only SD-SimCLR and
SD-MoCo exclusively utilize the NIHCC dataset, which consti-
tutes the largest portion of the pretraining dataset, accounting
for 85.46% of the overall pretraining images. All other baseline
models utilize the entire pretraining dataset. For a more de-
tailed overview of the pretraining dataset utilization plan, refer
to Table. I.

C. Experiment Setup

All of the above experimental designs evaluated MTPret on
two backbone including ResNet-18 and ResNet-50. To com-
pare those baseline pretrain algorithms or initialization settings,
MTPret adopts corresponding metrics for different tasks, in-
cluding Area under the Curve (AUC) and Accuracy (Acc.)
for binary classification tasks, mean Area under the Curve
(mAUC) and Area under the Curve of Single Label (AUC)
for multilabel classification tasks, Dice Similarity Coefficient
(Dice) and mean Intersection over Union (mIoU) for seg-
mentation task, mean Average Precision (mAP), and Average
Precision of Single Target (AP, at the IoU threshold of 0.5) for
bbox detection (TBX). In this experiment, MTPret tunes opti-
mal hyperparameters by evaluating performance on validation
datasets using a main metric indicated in bold, and presents the
results on the testing datasets.

D. Overall Results

We compare MTPret with models trained using every single
dataset in an end-to-end manner, as well as other pretrain-
ing/initialization strategies. Table II presents the performance of
MTPret on seven datasets with the major performance metrics.
From it we can see that MTPret achieves the best performance
in most results on these tasks, which is proven by both two
backbone networks (ResNet-18 and ResNet-50). Only on the
Deep-Covid [2] dataset, with setting of ResNet-18, MTPret is
only 0.01% lower than MD-MoCo. This result demonstrates
that MTPret perform robustly and can be adapted to various
medical image analytics tasks with decent performance.

E. Ablation Studies

1) Effect of Multidataset Pretraining: By comparing
SD-SimCLR and MD-SimCLR, as well as SD-MoCo and
MD-MoCo, we observe that our multidataset pretraining strat-
egy outperforms the single-dataset pretraining approach. For in-
stance, in all classification tasks using ResNet-50, SD-SimCLR
achieves an average AUC of 86.72%, while SD-MoCo achieves
90.32%. On the other hand, MD-SimCLR achieves an average
AUC of 86.99% (0.27%↑), and MD-MoCo achieves 90.75%
(0.43%↑). This demonstrates the efficacy of introducing im-
age representations from various body parts in improving the
model’s expressive capability during multidataset pretraining.
Similar conclusions are drawn in experiments with ResNet-
18 setting. In segmentation and detection tasks, specifically
when utilizing ResNet-18 as the backbone model, MD-SimCLR
exhibits a performance decrease in segmentation compared to
MD-MoCo, with a DiCe score of 95.01% (0.30%↓).

2) Comparison Between SimCLR and MoCo: By compar-
ing SD-SimCLR with SD-MoCo and MD-SimCLR with MD-
MoCo, we analyze the performance differences between the
MoCo and SimCLR contrastive learning strategies in the con-
text of medical image pretraining tasks. Across all classification
tasks using ResNet-50, SD-MoCo achieves a performance im-
provement of 3.60% AUC compared to SD-SimCLR. Similarly,
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TABLE II
OVERVIEW RESULTS FOR SEVEN TASKS USING VARIOUS PRETRAINING ALGORITHMS

Datasets Metrics Pretrain

Scratch ImageNet SD-SimCLR MD-SimCLR SD-MoCo MD-MoCo MD-MoCo++ MTPret−− MTPret
ResNet-18

NIHCC [20] mAUC 71.00 70.84 74.68 75.58 76.52 77.97 78.02 75.27 79.05
Pneumonia [21] AUC 96.59 96.16 98.44 96.73 98.46 98.49 99.39 99.51 99.60
MURA [22] AUC 86.66 88.10 87.19 87.37 88.06 88.29 88.15 88.40 88.52
Chest X-ray... [17] Dice 95.24 95.26 95.18 95.01 95.29 95.31 95.25 95.14 95.37
TBX [23] mAP 30.71 29.46 31.92 36.36 34.27 36.00 35.95 34.70 36.71
CheXpert [24] AUC 82.90 82.79 85.76 85.81 88.11 88.18 87.43 87.45 88.52
DeepCovid [2] AUC 96.80 98.98 99.11 99.71 99.64 99.95 99.92 99.89 99.94

ResNet-50
NIHCC [20] mAUC 66.05 72.36 77.62 78.05 77.83 79.31 79.74 77.20 80.06
Pneumonia [21] AUC 96.58 98.75 91.80 92.14 99.29 99.52 99.49 99.58 99.72
MURA [22] AUC 86.24 87.92 87.32 86.64 87.70 87.95 87.99 87.15 88.41
Chest X-ray... [17] Dice 93.52 94.08 94.26 94.38 94.26 94.33 95.05 95.04 95.27
TBX [23] mAP 23.93 35.61 33.26 35.25 33.28 36.78 36.52 35.14 37.83
CheXpert [24] AUC 77.57 79.26 77.95 79.66 87.40 87.23 88.73 88.61 89.22
DeepCovid [2] AUC 98.13 98.91 98.93 98.44 99.38 99.76 99.75 99.71 99.91

Note: Bold indicate the best results among all methods.

MD-MoCo outperforms MD-SimCLR by 3.77% AUC. This
indicates that MoCo exhibits a stronger capability for visual fea-
ture representation compared to SimCLR in this medical image
pretraining task. Similar experimental results are observed in
segmentation or detection tasks. Likewise, the conclusion holds
true when ResNet-18 is used as the backbone model.

3) Effect of Multitask Pretraining and Cross-Task
Memorization: By observing the experimental results of
MD-MoCo and MTPret−−, we can discern the effectiveness
of multitask learning. We summarize the experimental results
based on the average performance in classification tasks,
and similar conclusions can be observed in segmentation or
detection tasks. In fact, after introducing multitask learning,
MTPret−− shows a performance decrease in most cases. For
instance, based on ResNet-18, MTPret−− experiences an
average AUC of 0.48%↓, and based on ResNet-50, it encoun-
ters an average AUC of 0.30%↓. This decline is attributed to
the lack of effective handling of catastrophic forgetting during
the introduction of cross-task learning, leading to a decrease
in the model’s domain generalization capability.

However, when we introduce cross-task memorization and a
cyclic and reshuffled learning schedule to address catastrophic
forgetting, representing the model as MTPret, we observe that
compared to MD-MoCo, MTPret achieves an average AUC of
91.13% (0.55%↑) on ResNet-18 and an average AUC of 91.46%
(0.71%↑) on ResNet-50. This underscores the potential brought
by multitask learning and validates the effectiveness of our
advanced techniques in addressing catastrophic forgetting.

4) Comparison of Different Parameter Initialization:
We compare the experimental results of MD-MoCo and MD-
MoCo++ to examine the impact of different parameter ini-
tialization strategies on pretraining. The results show that in
the classification task, based on ResNet-18, MD-MoCo and
MD-MoCo++ achieve identical performance with an average
AUC of 90.58%. However, based on ResNet-50, MD-MoCo++

surpasses MD-MoCo, achieving an average AUC of 91.14%
(0.39%↑). Nevertheless, in segmentation and detection tasks,
such as based on ResNet-18, MD-MoCo++ performs worse
than MD-MoCo, achieving a Dice of 95.25% (0.06%↓) and
mAP of 35.95% (0.05%↓). This suggests that the performance

differences brought about by different initialization strategies
are often unpredictable, and although they may lead to per-
formance improvements in certain tasks, the improvement is
extremely limited. This phenomenon has also been observed in
recent studies [28], supporting similar conclusions. We attribute
this to the absence of any catastrophic forgetting strategy during
the contrastive learning process, resulting in the model com-
pletely forgetting the rich image representations learned from
ImageNet.

F. Case Studies

In this section, we show in detail the performance of MTPret
in every dataset/task. In Section III-F1 we present the per-
formance of MTPret on multilabel classification tasks, which
details its performance of all classification and performance
of single classification. In Section III-F2 we analyze the per-
formance of MTPret on X-rays from different body parts. In
addition, using these two tasks as examples (similar conclusions
can be drawn from other tasks), we explore the contribution of
each module of MTPret in detail. In Section III-F3 we show the
performance of MTPret on various tasks, specifically in addition
to the previous classification task, we analyze the performance
of MTPret on segmentation task and bbox detection task. Fi-
nally in Section III-F4 we perform two external validations
of the MTPret to evaluate its performance on tasks that are
not learned during the pretrain phase. Besides, we explore the
possibility of combining MTPret with other models.

1) MTPret on NIHCC: MTPret was initially developed on
the NIHCC [20], the dataset contains chest X-ray images of
patients suffering from one or more of 14 diseases. MTPret
was evaluated on testing set as well as some baselines and
performances of the ablation experiments mentioned above.
All results are summarized below and an overview is given
in Fig. 3, which shows the performance on a single disease
and the average performance on all diseases with various pre-
trained algorithms.

As we can see in Fig. 3, the performance of MTPret is
excellent and robust both on average and in terms of single-class
disease prediction. Specifically, MTPret not only achieved the
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Fig. 3. Summary of MTPret performance on the testing sets on NIHCC [20]. AUC values are used as metric. The performance of all baselines and MTPret
based on two backbones are plotted.

first place in average AUC on both backbone, but it also excelled
in the prediction of single diseases. For example, on ResNet-18,
MTPret achieved the best performance on all ten single disease
predictions, finishing second on only four diseases (consoli-
dation, emphysema, hernia, and nodule). In addition, MTPret
achieved a significant performance improvement compared to
other pretraining algorithms, such as Scratch on ResNet-18
(14.01%↓) and on ResNet-50 (7.70%↓), ImageNet on ResNet-
18 (8.21%↓), and on ResNet-50 (7.70%↓).

2) MTPret on Pneumonia and MURA: The Pneumonia
dataset [21] contains chest X-ray images of patients diagnosed
with pneumonia and those of normal individuals, and MURA
[22] is a bone X-rays dataset consisting of skeletal abnormal-
ities and normal bones. For this two binary classification task
with various body parts, the performances of MTPret and other
solutions on testing set are shown in Fig. 4.

As shown in Fig. 4 we can see improvement of MTPret
at each step. From Scratch to SD-MoCo, to MD-MoCo, to
MTPret, all results show the contribution of contrastive learning
with multidataset and continual learning with multitasks. For
contrastive learning algorithm, all four sets of experiments show
that MoCo outperforms SimCLR for both SD and MD. For
single or multiple dataset contrastive leaning, all experiment
result show that MD outperforms SD using MoCo solution. For
parameter initialization tips of model, compare MD-MoCo and
MD-MoCo++, we can see similar scores, which means that the
parameters of the backbone network are updated substantially
in the contrastive learning to the extent that they are indepen-
dent of the initial parameter settings. For multitask learning,

Fig. 4. Ablation Studies of MTPret performance on the testing sets on
Pneumonia [21] and MURA [22], where Acc. and AUC values are used as
metric. Performance of MTPret and all baselines on two backbone networks
are plotted for ablation studies. On the vertical axis of each subplot, red
arrows indicate AUC improvements from one to another and arrows in blue
show performance degradation.

MTPret optimized with regularization constraints and learn-
ing rate scheduler performs consistently and outperforms MD-
MoCo and MTPret++ in all experiments. Finally, for multiple
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Fig. 5. Six X-ray examples with abnormal skeletons, each including the
original image and the attention maps extracted from the ImageNet and
MTPret pretrained DNNs. The number below each attention map is the
probability that the model predicts the presence of abnormal bones in that
image. The blue numbers indicate incorrect prediction and red numbers
indicate correct prediction.

body parts, MTPret exceeds those baselines, such as scratch
and ImageNet, on any body parts, which is proven by both two
backbone networks.

In addition to quantitative analysis, we also visualize the
attention maps of DNN under various settings for the MURA
[22] task, as an example to explain how DNN models identify
pathologies in X-ray images and interpret misclassification.
Examples of identified cases are shown in Fig. 5, which includes
the original input images, output heatmaps highlighting regions
of high importance, detected high-risk areas, and probability
scores for abnormal skeletons. As shown in the first row of
Fig. 5, MTPret can correctly identify whether the bone is ab-
normal in X-ray with higher confidence scores than ImageNet.
The detection results are also consistent with the location of
the skeletal abnormality. Some inaccurate cases are shown in
the second row (MTPret recognition error) and the third row
(ImageNet recognition error) of Fig. 5. The cause of recognition
error is often that the model does not find the lesion or the lesion
that model found is offset. Based on the observed phenomenon
in the heatmaps, it is possible that the model incorrectly iden-
tified the entire lung region as a potentially abnormal area,
resulting in a failed identification.

Some lung segmentation results of cases are plotted in Fig. 6,
from it we see that, on the lung segmentation task, MTPret
progressively optimizes the results of segmentation by each
proposed module, especially on the top and bottom boundaries
of the lung.

3) MTPret on Lung and TBX: In the previous section,
we discussed the performance of MTPret on multi body part
X-rays. But both of them are limited to classification tasks,
next, we invited MTPret to evaluate on others, such as lung
segmentation task on Chest X-ray Masks and Labels [17] and
tuberculosis bbox detection task on TBX [23].

Table III presents the results obtained with different pretrain-
ing algorithms. On the lung segmentation task, MTPret obtained
the highest scores for both the Dice and mIoU metrics, and
on the TB detection task, MTPret achieved the first place on

mAP. An interesting finding is that MD-MoCo achieved the best
results for APActive on both backbones, while SimCLR achieved
the best results for APLatent. Although MTPret did not obtain
the best detection results for individual targets, it demonstrates
stability and reliability in global senses.

4) MTPret on MTPret for CheXpert and Deep-Covid:
We here invited CheXpert [24] and Deep-Covid [24] as ex-
ternal validation, which are out of distribution of pretraining
datasets. CheXpert [24] is a large chest X-rays dataset including
14 diseases and Deep-Covid [24] is composed of COVID-19
X-rays. Actually, for all above experiments, either all or part
of training data has been used for pretraining the backbones. In
this experiments, we hope to use DNN backbones pretrained by
MTPret to handle external tasks, where these datasets were not
used in pretraining.

Figs. 7 and 8 show the results of various pretraining al-
gorithms for Acc. and AUC on Deep-Covid, respectively.
From them we can see that on the Acc. metric, compared to
other methods, MTPret achieves better performance on both
backbone, and on the AUC metric with ResNet-50, MTPret
outperforms other pretrained algorithms. On the AUC with
ResNet-18, MTPret achieves the second place and is only 0.01
lower than the first place MD-MoCo. These results indicate that
MTPret is robust and can transfer to a new task that were not
learned during the pretraining phase easily.

Table IV lists the AUC and average AUC results for the five
major lung diseases on the CheXpert [24] dataset for various
pretraining algorithms. The first and second place pretraining
algorithms are marked in red font and green font. Compared
to other pretraining algorithms, MTPret still achieves optimal
performance on the overall average results, and for individual
diseases, it can also achieve an competitive result. In addi-
tion, we can learn that MoCo-based solutions always achieve
competitive results on this task, and they always achieve first
or second place results for several cases. This result indicates
that MoCo-based solution can provide robust performance for
transfer of pretrained parameters, affirming the correctness of
choosing MoCo in the context of MTPret.

G. More Comparisons With Results of Other Literature

1) Comparisons With Recent Works Based on the Same
Datasets: While MTPret was not specifically designed for any
particular medical imaging task, it outperforms many recent
works that use the same datasets in terms of overall perfor-
mance. For NIHCC datasets, [29] also proposed novel pretrain-
ing algorithms based on grayscale ImageNet using InceptionV3
as the backbone, and they reported a 77.06% (2.94%↓) average
AUC for the same task. For other tasks, [30] reported a 93.73%
(4.42%↓) accuracy for the same pneumonia classification task,
[31] reported a 94.64% Dice (0.73%↓) for the lung segmen-
tation. [32] reported an AUC of 82.45% (6.07%↓) for MURA
[22] dataset, and [23] reported a 58.70% (4.76%↓) APActive and
a 9.60% (2.61%↓) APLatent for TBX [23] based on FasterRNN.
For Deep-Covid datasets, [2] similarly employed ResNet-18
and ResNet-50 for the Covid classification task, reporting an
AUC value of 98.90% (1.04%↓) for ResNet-18 and 99.00%
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Fig. 6. Two cases of the segmentation results of various pretraining algorithms are shown. The green lines plot the ground truth and the red area is the
model prediction results, and each result is zoomed in on the main differences between the models using the blue circles.

TABLE III
PERFORMANCE COMPARISONS FOR LUNG SEGMENTATION (LUNG)

AND TB DETECTION (TBX) USING VARIOUS PRETRAINING

ALGORITHMS

Pretrain Lung TBX

Dice mIoU mAP APActive APLatent
ResNet-18

Scratch 95.24 94.00 30.71 56.71 4.72
ImageNet 95.26 94.10 29.46 56.27 2.66
SD-SimCLR 95.18 93.97 31.92 50.69 13.14
MD-SimCLR 95.01 93.77 36.36 66.40 6.31
SD-MoCo 95.29 94.10 34.27 56.29 12.24
MD-MoCo 95.31 94.14 36.00 67.17 4.84
MD-MoCo++ 95.25 94.03 35.95 65.19 6.70
MTPret−− 95.14 93.90 34.70 63.43 5.97
MTPret 95.37 94.22 36.71 64.84 8.59

ResNet-50
Scratch 93.52 92.03 23.93 44.85 3.01
ImageNet 94.08 92.65 35.61 58.81 12.42
SD-SimCLR 94.26 92.88 33.26 57.89 8.62
MD-SimCLR 94.38 93.00 35.25 57.15 13.36
SD-MoCo 94.26 92.86 33.28 62.23 4.32
MD-MoCo 94.33 93.04 36.78 64.37 9.18
MD-MoCo++ 95.05 93.79 36.52 62.22 10.82
MTPret−− 95.04 93.82 35.14 57.32 12.97
MTPret 95.27 94.10 37.83 63.46 12.21

Note: Bold indicate the best results among all methods.

(0.91%↓) for ResNet-50. In addition, for CheXpert datasets,
[33] proposed deep AUC maximization (DAM) to achieve the
best performance on this dataset. We conducted detailed ex-
periments to substantiate the superiority of MTPret, and the
experimental results are showcased in Table V. The findings
reveal that MTPret surpasses DAM [33], demonstrating its ro-
bust model domain generalization capability. The benefits of
MTPret showcase the possibility of utilizing SSL and CL for
pretraining the backbone with multiple tasks.

Fig. 7. Performance (AUC) comparisons for Deep-Covid using various
pretraining algorithm, the most important areas of the ROC curve are shown
in the black rectangle to see the differences in the results of each algorithm.

2) Comparisons With Self-Supervised Learning: To further
demonstrate domain generalization ability of MTPret in self-
supervised learning, we selected SimCLR [27], MoCo [16],
SwAV [34], and MoCo-CXR [4] as baseline models for compar-
ison. All these baseline models utilized ResNet-50 as the back-
bone for self-supervised pretraining on visual images. Some
works extended the efforts to ResNet-18, such as SimCLR
[27] and MoCo-CXR [4]. We conducted experiments on two
datasets, CheXpert [24] and Deep-Covid [2], as these datasets
were not used in the pretraining of MTPret. The experimental
results are presented in Tables VI and VII. The results show
that MTPret achieved the best performance on all four met-
rics in Deep-Covid. On the CheXpert dataset, MTPret outper-
formed other self-supervised learning algorithms on average
and demonstrated superior performance for specific diseases
in most cases. In this experimental outcome, MoCo-CXR [4],
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Fig. 8. Performance (Acc.) comparisons for Deep-Covid using various
pretraining algorithm, the red numbers and green numbers indicate the results
of the best and worst.

TABLE IV
PERFORMANCE (AUC) COMPARISONS FOR CHEXPERT USING VARIOUS

PRETRAINING ALGORITHMS

Pre-train CheXpert

Atel. Cardi. Consol. Edema Pleural. Average
ResNet-18

Scratch 79.73 77.12 87.98 86.29 83.40 82.90
ImageNet 77.55 77.93 89.28 86.76 82.45 82.79
SD-SimCLR 81.73 82.84 89.65 87.66 86.91 85.76
MD-SimCLR 81.69 82.91 89.45 88.13 86.90 85.81
SD-MoCo 83.07 83.91 92.11 91.47 90.00 88.11
MD-MoCo 81.74 84.35 90.90 92.59 91.30 88.18
MD-MoCo++ 79.94 80.85 91.60 93.48 91.26 87.43
MTPret−− 82.24 82.43 91.31 91.77 89.50 87.45
MTPret 82.37 84.92 93.22 91.68 90.42 88.52

ResNet-50
Scratch 73.43 71.39 83.99 82.90 76.15 77.57
ImageNet 73.38 75.47 87.67 80.42 79.39 79.26
SD-SimCLR 73.68 73.92 83.13 83.48 75.54 77.95
MD-SimCLR 71.49 75.08 88.46 82.47 80.80 79.66
SD-MoCo 83.34 87.30 89.06 88.65 88.65 87.40
MD-MoCo 82.78 84.77 90.48 89.48 88.64 87.23
MD-MoCo++ 81.28 85.71 90.85 93.94 91.88 88.73
MTPret−− 82.04 86.25 92.30 91.68 90.76 88.61
MTPret 82.57 84.89 93.38 92.10 93.15 89.22

Note: Atel.: Atelectasis, Cardi.: Cardiomegaly, Consol.: Consolidation, and
Pleural.: Pleural Effusion.

based on the MoCo algorithm for pretraining on X-ray images,
exhibited inferior performance compared to MTPret. This is
attributed to MTPret’s further extension of multitask pretraining
on top of MoCo, leading to enhanced representation learning for
X-ray images.

IV. RELATED WORKS AND DISCUSSIONS

In this section, we present the studies that are relevant to our
work, and discuss several open issues in this work.

A. Deep Learning for Medical Image Analysis

Deep learning [21] has made tremendous success in medical
image analytics, such as image classification and segmentation
tasks for diseases in bones, lungs and heads with X-rays. It

TABLE V
PERFORMANCE (AUC) COMPARISONS FOR CHEXPERT OF MTPRET

AND DAM [33]

Methods CheXpert

Atel. Cardi. Consol. Edema Pleural. Average
DenseNet-121

DAM [33] 82.52 87.51 88.27 92.87 91.51 88.54
ResNet-18

DAM [33] 77.55 77.93 89.28 86.76 82.45 82.79
MTPret 82.37 84.92 93.22 91.68 90.42 88.52

ResNet-50
DAM [33] 73.38 75.47 87.67 80.42 79.39 79.26
MTPret 82.57 84.89 93.38 92.10 93.15 89.22

Note: Atel.: Atelectasis, Cardi.: Cardiomegaly, Consol.: Consolida-
tion, and Pleural.: Pleural Effusion. Bold indicate the best results
among all methods.

TABLE VI
PERFORMANCE COMPARISONS FOR DEEP-COVID OF MTPRET AND

OTHER SELF-SUPERVISED LEARNING (SSL) ALGORITHMS

SSL Deep-Covid

Accuracy Specificity Sensitivity AUC
ResNet-18

SimCLR [27] 99.67 89.23 99.90 99.02
MoCo-CXR [4] 97.81 93.85 97.90 99.48
MTPret 99.71 94.00 99.90 99.94

ResNet-50
SimCLR [27] 98.43 89.23 98.63 99.37
MoCo [16] 99.77 89.23 100.00 99.42
SwAV [34] 99.74 87.69 100.00 98.90
MoCo-CXR [4] 99.77 89.23 100.00 99.70
MTPret 99.77 93.00 100.00 99.91

Note: Bold indicate the best results among all methods.

TABLE VII
PERFORMANCE COMPARISONS FOR CHEXPERT OF MTPRET AND OTHER

SELF-SUPERVISED LEARNING (SSL) ALGORITHMS

SSL CheXpert

Atel. Cardi. Consol. Edema Pleural. Average
ResNet-18

SimCLR [27] 80.25 84.48 92.40 86.23 90.17 86.71
MoCo-CXR [4] 84.20 81.42 92.61 89.02 91.54 87.76
MTPret 82.37 84.92 93.22 91.68 90.42 88.52

ResNet-50
SimCLR [27] 79.59 86.47 91.74 86.92 90.57 87.07
MoCo [16] 83.86 79.79 89.08 87.36 90.12 86.04
SwAV [34] 85.62 85.73 92.12 88.56 91.09 88.62
MoCo-CXR [4] 81.75 83.56 90.98 85.49 90.03 86.36
MTPret 82.57 84.89 93.38 92.10 93.15 89.22

Note: Atel.: Atelectasis, Cardi.: Cardiomegaly, Consol.: Consolidation, and
Pleural.: Pleural Effusion. Bold indicate the best results among all methods.

usually requires an extremely large number of images with fine-
grained annotations to train the DNN models and deliver decent
performance [8] in a supervised learning manner.

1) Self-Supervised Learning for Medical Images: To lower
the size of annotated samples required, the self-supervised
pretraining paradigm has been recently proposed to boost the
performance of DNN models through learning visual features
from images [16], [27] without the use of labels. Among a
wide range of self-supervised pretraining methods, contrastive
learning (CL) [27] algorithms use a similarity-based metric to
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measure the distance between two embeddings derived from
two different views of a single image, where the views of
image are generated through data augmentation, e.g., rotation,
clip, and shift, and embeddings are extracted from the DNN
with learnable parameters. In particular, for computer vision
tasks, the contrastive loss is computed using the feature rep-
resentations of the images extracted from the encoder network,
resulting in the clustering of similar samples together and the
dispersal of different samples. Recent methods such as SwAV
[34], SimCLR [27], MoCo [16], and PILR [35] have been
proposed to outperform supervised learning methods on natural
images. While contrastive learning methods have demonstrated
promising results on natural image classification tasks, the at-
tempts to leverage them in medical image analysis are often
limited [36], [37]. Most recently [4] proposed MoCo-CXR that
can produce models with better representations for the detection
of pathologies in chest X-rays using MoCo [16]. Surveys on
self-supervised pretraining could be found [38], [39].

2) Multitask Learning for Medical Images: In addition to
self-supervised learning, multitask learning [8] is yet another
paradigm to boost the performance of DNNs using datasets of
various tasks. In recent days, a number of studies have applied
multitask learning to medical image analytics. For example,
[5] proposed a multitask representation learning framework
for sequential medical images via self-supervision. [9] adopted
multitask learning on CT images for quality assessment with-
out the use of reference data. Furthermore, [6] proposed to
combine multitask learning and contrastive learning for the
diagnosis of COVID-19 with CT and X-ray data. More re-
cently, [7] leveraged multitask vision transformer (ViT) and
low-level chest X-ray feature corpus to determine the severity of
COVID-19 infection.

3) Catastrophic Forgetting for Multitask Learning: A com-
mon phenomenon observed in DNN is the deterioration of
performance on previous tasks when the networks are con-
tinually updated on new tasks or different data distributions.
This phenomenon, known as “catastrophic forgetting”, becomes
particularly pronounced in the context of medical images [40],
which are generated through continuously changing policies,
protocols, scanner hardware, or settings. Recent efforts have
addressed this issue by employing dynamic memory for op-
timized data replay [40], [41], aiming to mitigate forgetting.
In this work, we use the use of L2-SP to address catastrophic
forgetting in multitask continual learning. L2-SP, functioning
as a method of parameter regularization, introduces penal-
ties for forgetting to retain the memory of features learned
on source tasks. Through this approach, we seek to enhance
the robustness of DNNs in the face of continuous updates
for multitask learning, specifically in the domain of medical
image processing.

B. Comparisons With Relevant Works

The most relevant works to our study are [4], [6] from the
problem and solution perspectives, respectively. Compared to
[4], we both intend to pretrain DNNs using X-ray images

through self-supervisions. However, our work intend to pre-
train the DNNs using multiple datasets with various tasks.
Thus, MD-MoCo has been proposed by MTPret to incorporate
multiple datasets in MoCo-based representation learning stage.
Furthermore, MTPret leveraged multitask continual learning
to fully utilize the task-specific information in all pretraining
datasets so as to learn discriminative features better. Compared
to [6], both of us intended to take self-supervised learning
in multitask settings. However, MTPret used multiple datasets
to pretrain DNNs for various transfer learning applications,
while [6] only improved COVID-19 diagnosis using multi-
modal datasets (i.e., X-ray and CT). In this work, we only eval-
uate MTPret with two convolutional backbones ResNet-18 and
ResNet-50. For future work, we intend to study novel ViTs [42]
with even more self-supervised learning tasks [43] to further im-
prove the pretraining and fine-tuning performance of MTPret.

Compared to the conference version [44] of this work, we
have made nontrivial extension from following four aspects:
1) We have revised the whole manuscript with more informative
materials in introduction section. We summarize the goal of
this research as the answer to three research questions. Refer to
Section Section I for details. 2) We have included new materials
in methodology section, where we significantly extended and
improved methodology section with elaborations, pseudocodes,
and analysis on detailed design. Refer to Section III for details.
3) We have included new results in experiment section. Specif-
ically, we included two new external tasks derived from two
external datasets for detailed evaluation. We also provided new
results in ablation studies, and interpretation studies with neural
network dissection and visualization. These new results further
confirmed the generalizability and superiority of the proposed
method. Refer to Section IV for details. 4) We have included
additional discussions on the limitation of this work and the
related works. We compared this work more comprehensively
with more baseline algorithms under various setting. Refer to
Section V for details.

V. LIMITATIONS

While MTPret has achieved significant performance gains,
the work still has the following limitations. The first limita-
tion is that this work only evaluate MTPret with two convolu-
tional backbones ResNet-18 and ResNet-50, without extending
MTPret to ViTs [42]. ViTs has been widely used in medical
image-related analysis tasks over the past two years, including
classification, segmentation, registration, etc. For future work,
we intend to study novel ViTs with even more self-supervised
learning tasks [43] to further improve the pretraining and fine-
tuning performance of MTPret.

Another limitation of this work is that, compared to tradi-
tional self-supervised learning methods such as SimCLR [27]
and MoCo [16], MTPret further introduces multitask learning to
enhance representation learning, potentially introducing some
supervised information. Although we mitigate the risk of the
model learning from the test set data during experimental design
by partitioning the dataset, there is still a risk of the model
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learning the dataset distribution prematurely during the pre-
training stage, such as the NIHCC [20] dataset. However, we
still assert that MTPret is a robust algorithm, as evidenced by
our evaluation of MTPret on Deep-Covid [2] and CheXpert
[24] datasets, neither of which were used for any stage of
MTPret pretraining. This experiment further demonstrates the
domain generalization ability of MTPret, showcasing its robust
performance on unseen datasets.

VI. CONCLUSION

This work presents a “proof-of-concept” study on multitask/
multidataset self-supervised representation learning for X-ray
images. It introduces MTPret, a pretraining pipeline designed
to enhance the performance of DNNs in various X-ray analytic
tasks. The approach involves collecting and aggregating multi-
ple X-ray image datasets from different body parts to address
data inconsistency issues between tasks and datasets. Addition-
ally, it incorporates MD-MoCo and multitask continual learning
for pretraining the backbone DNNs in a self-supervised CL
manner. The study demonstrates the performance of MTPret
using eleven X-ray image datasets and evaluates its effective-
ness on seven tasks, including pneumonia classification, skele-
tal anomaly classification, lung segmentation, tuberculosis bbox
detection, chest disease diagnosis, and COVID-19 classifica-
tion. The results show significant performance improvements,
particularly in ResNet-18 (8.21%↑) and ResNet-50 (7.70%↑) on
the NIHCC dataset. Moreover, MTPret displays robustness and
generalizability in ubiquitous X-ray analytic tasks, as evidenced
by its performance in external tasks such as chest disease di-
agnosis on CheXpert and COVID-19 classification on Deep-
Covid. It is noted that MTPret is considered a proof-of-concept
study, leveraging self-supervised representation learning and
multitask continual learning to achieve performance improve-
ment in numerous tasks.
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