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Abstract. While self-supervised learning (SSL) algorithms have been
widely used to pre-train deep models, few efforts [11] have been done
to improve representation learning of X-ray image analysis with SSL
pre-trained models. In this work, we study a novel self-supervised pre-
training pipeline, namely Multi-task Self-super-vised Continual Learning
(MUSCLE), for multiple medical imaging tasks, such as classification and
segmentation, using X-ray images collected from multiple body parts,
including heads, lungs, and bones. Specifically, MUSCLE aggregates X-
rays collected from multiple body parts for MoCo-based representation
learning, and adopts a well-designed continual learning (CL) procedure
to further pre-train the backbone subject various X-ray analysis tasks
jointly. Certain strategies for image pre-processing, learning schedules,
and regularization have been used to solve data heterogeneity, over-
fitting, and catastrophic forgetting problems for multi-task/dataset learn-
ing in MUSCLE. We evaluate MUSCLE using 9 real-world X-ray datasets
with various tasks, including pneumonia classification, skeletal abnor-
mality classification, lung segmentation, and tuberculosis (TB) detec-
tion. Comparisons against other pre-trained models [7] confirm the proof-
of-concept that self-supervised multi-task/dataset continual pre-training
could boost the performance of X-ray image analysis.

Keywords: X-ray images (X-ray) · Self-supervised learning

1 Introduction

While deep learning-based solutions [1] have achieved great success in medical
image analysis, such as X-ray image classification and segmentation tasks for
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diseases in bones, lungs and heads, it might require an extremely large number
of images with fine annotations to train the deep neural network (DNN) models
and deliver decent performance [2] in a supervised learning manner. To lower
the sample size required, the self-supervised learning (SSL) paradigm has been
recently proposed to boost the performance of DNN models through learning
visual features from images [3] without using labels.

Among a wide range of SSL methods, contrastive learning [4] algorithms use a
similarity-based metric to measure the distance between two embeddings derived
from two different views of a single image, where the views of image are generated
through data augmentation, e.g., rotation, clip, and shift, and embeddings are
extracted from the DNN with learnable parameters. In particular, for computer
vision tasks, the contrastive loss is computed using the feature representations
of the images extracted from the encoder network, resulting in the clustering of
similar samples together and the dispersal of different samples. Recent methods
such as SwAV [5], SimCLR [6], MoCo [7], and PILR [8] have been proposed to
outperform supervised learning methods on natural images. While contrastive
learning methods have demonstrated promising results on natural image clas-
sification tasks, the attempts to leverage them in medical image analysis are
often limited [9,10]. While Sowrirajan et al. [11] proposed MoCo-CXR that can
produce models with better representations for the detection of pathologies in
chest X-rays using MoCo [7], the superiority of SSL for other X-ray analysis
tasks, such as detection and segmentation, on various body parts, such as lung
and bones, is not yet known.

Our Contributions. In this work, we proposed MUSCLE–MUlti-task Self-
supervised Continual LEarning (shown in Fig. 1) that pre-trains deep models
using X-ray images collected from multiple body parts subject to various tasks,
and made contributions as follow.

1. We study the problem of multi-dataset/multi-task SSL for X-ray images. To
best of our knowledge, only few works have been done in related area [11,12],
especially by addressing data heterogeneity (e.g., image sizes, resolutions, and
gray-scale distributions), over-fitting (e.g., to any one of the tasks), and catas-
trophic forgetting (e.g., ejection of knowledge learned previously) in multi-
dataset/multi-task learning settings.

2. We present MUSCLE that pre-trains the backbone in multi-dataset/multi-task
learning settings with task-specific heads, including Fully-Connected (FC)
Layer, DeepLab-V3 [13], and FasterRCNN [14] for classification, segmenta-
tion, and abnormal detection tasks respectively. As shown in Fig. 1, MUSCLE
(1) adopts MoCo to learn representations with a backbone network from
multiple datasets, with pre-processing to tackle data heterogeneity, and fur-
ther (2) pre-trains the backbone to learn discriminative features with contin-
ual learning (CL) subject to multiple tasks, while avoiding over-fitting and
“catastrophic forgetting” [15,16]. MUSCLE finally (3) fine-tunes the pre-trained
backbone to adapt every task independently and separately.
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3. In this work, we collect 9 X-ray datasets to evaluate MUSCLE, where we pre-
train and fine-tune the network to adapt all tasks using training subsets,
and validate the performance using testing subsets. The experimental results
show MUSCLE outperforms ImageNet/MoCo pre-trained backbones [11] using
both ResNet-18 and ResNet-50 as backbones. The comparisons confirm the
proof-of-concept of MUSCLE–self-supervised multi-task/dataset continual pre-
training can boost performance of X-ray image analysis.

Fig. 1. The pipeline of MUSCLE, consists of three parts (1) Multi-Dataset Momentum
Contrastive (Multi-Dataset MoCo) Learning, (2) Multi-Task Continual Learning and
(3) Fine-tuning on Downstream Tasks.

2 Methodologies

In this section, we present the framework and algorithms design for MUSCLE. As
was shown in Fig. 1, MUSCLE consists of three steps as follows.

1. Multi-dataset momentum contrastive learning. (MD-MoCo) Give multiple
datasets of X-ray images collected from different body parts and based on dif-
ferent image resolution and gray-scale distributions, MUSCLE aggregates these
datasets with pre-processing (e.g., resize, re-scale, and normalization), then
adopts a MoCo-based SSL algorithm [11] to pre-train the backbone networks
and learn the representation of X-ray images within the aggregated dataset.

2. Multi-task continual learning. Given the MD-MoCo pre-trained backbone and
the datasets for different X-ray analysis tasks, e.g., pneumonia classification,
skeletal abnormality classification, and lung segmentation, MUSCLE leverages
continual learning algorithms and further pre-trains a unified backbone net-
work with alternating heads to learn the various sets of discriminative features
subject to the different tasks.
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3. Fine-tuning with downstream tasks. Given the pre-trained backbone and
every downstream X-ray image analysis task, MUSCLE fine-tunes and outputs
a neural network using pre-trained weights as the initialization and its own
task-specific head to fit the task independently.

2.1 Multi-Dataset Momentum Contrastive Learning (MD-MoCo)

To pre-train the backbone with multiple datasets, MUSCLE collects and aggre-
gates nine X-ray image datasets listed in Table 1. While these datasets have
offered nearly 179,000 X-ray images covering cover several parts of the human
body, including the chest, hand, elbow, finger, forearm, humerus, shoulder and
wrist, MUSCLE makes non-trivial extension to adopt MoCo [4,11] for multi-dataset
momentum contrastive learning as follows.

Table 1. An overview of nine publicly available X-ray image datasets

Datasets Body part Task Train Valid Test Total

Only Used for the first step (MD-MoCo) of MUSCLE

NIHCC [17] Chest N/A 112,120 N/A N/A 112,120

China-Set-CXR [18] Chest N/A 661 N/A N/A 661

Montgomery-Set-CXR [18] Chest N/A 138 N/A N/A 138

Indiana-CXR [19] Chest N/A 7,470 N/A N/A 7,470

RSNA Bone Age [20] Hand N/A 10,811 N/A N/A 10,811

Used for all three steps of MUSCLE

Pneumonia [21] Chest Classification 4,686 585 585 5,856

MURA [22] Various Bones Classification 32,013 3,997 3,995 40,005

Chest Xray Masks [18] Chest Segmentation 718 89 89 896

TBX [23] Chest Detection 640 80 80 800

Total N/A N/A 169,257 4,751 4,749 178,757

Re-sizing, Re-scaling, Normalization, and Aggregation. The major challenge to
work with multiple X-ray image datasets collected from different body part is
the heterogeneity of images, including X-ray image resolutions and the distri-
bution of gray-scales. To aggregate these datasets, several image pre-processing
schemes have been used, where MUSCLE transforms and normalizes the gray-
scale distribution of these datasets using the Z-score method with the mean of
122.786 and a standard deviation of 18.390. Further to fully utilize GPU for the
resource-consuming MoCo algorithms, MUSCLE re-sizes all images into a 800 ×
500 resolution which balances the effectiveness and efficiency of deep learning.

MoCo-Based Pre-training with Aggregated Datasets. To utilize MoCo algo-
rithm [4] for X-ray images pre-training, MUSCLE further extends MoCo-CXR [11]
with advanced settings on data augmentation strategies and initialization tricks.
Specifically, while MoCo uses random data augmentation to generate contrastive
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views, MUSCLE disables random cropping, gaussian blurring, color/gray-scale jit-
tering to preserve the semantic information for medical images. Furthermore,
MUSCLE initializes the MoCo-based pre-training procedure with Kaiming’s ini-
tialization [24] to setup the convolution layers, so as to ensure the stability of
back-propagation in contrastive learning.

Note that, in this work, the training sets of all nine datasets have been used
for multi-dataset momentum contrastive learning, while four of them with specific
X-ray image analysis tasks are further used for multi-task continual learning.

2.2 Multi-task Continual Learning

To further pre-train the backbone subject to task-specific representations,
MUSCLE adopts the continual learning (CL) [25] with four X-ray image analysis
tasks, including pneumonia classification from Pneumonia [21], skeletal abnor-
mality classification from MURA [22], lung segmentation from Chest Xray Masks
and Labels [18], and Tuberculosis(TB) detection from TBX [23]. Specifically,
MUSCLE extends the vanilla CL for neural network, which iterates the training
procedures of the backbone network with alternating task-specific heads subject
to tasks, with two major advancements as follows.

Cyclic and Reshuffled Learning Schedule. MUSCLE splits the continual learning
procedure into 10 rounds of learning process, where each round of learning
process iterates the 4 learning tasks one-by-one and each iterate of learning task
trains the backbone network with 1 epoch using a task-specific head, i.e., Fully-
Connected (FC) Layer for classification tasks, DeepLab-V3 [13] for segmentation
tasks, and FasterRCNN [14] for detection tasks. Furthermore, to avoid overfitting
to any task, MUSCLE reshuffle the order of tasks in every round of learning process,
and adopts Cosine annealing learning rate schedule as follow.

ηt = ηi
min +

1
2

(ηmax − ηmin)
(

1 + cos
(

t

T
· 2π

))
(1)

where ηt refers to the learning rate of the tth iteration, ηmax and ηmin and Ti refer
to the maximal and minimal learning rates, and T refers to the total number of
iterations within a period of cyclic learning rate schedule.

Cross-Task Memorization with Explicit Bias. Yet another challenge of multi-
task CL is “catastrophic forgetting”, where the backbone would “forget” the
knowledge learned from the previous iterates. To solve the problem, MUSCLE
leverages a knowledge transfer regularization derived from L2-SP [15]. In each
iterate of learning task, given the pre-trained model obtained from previous
iterates, MUSCLE sets the pre-trained weights as w0

S and trains the backbone
using the following loss, where wS is the learning outcome and α is the hyper-
parameter.
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Thus, above regularization constrains the distance between the learning out-
come and the backbone trained by the previous iterates.

2.3 Fine-Tuning on Downstream Tasks

Finally, given the backbone pre-trained using above two steps, MUSCLE fine-tunes
the backbone on each of the four tasks independent and separately. Again,
MUSCLE connects the pre-trained backbone with Fully-Connected (FC) Layer
for classification tasks, DeepLab-V3 [13] for segmentation tasks, and Faster-
RCNN [14] for detection tasks. Finally, MUSCLE employs the standard settings,
such as vanilla weight decay as stability regularization and step-based decay of
learning rate schedule, for such fine-tuning.

Table 2. Performance comparisons for pneumonia classification (pneumonia) and
skeletal abnormality classification (MURA) using various pre-training algorithms.

Datasets Backbones Pre-train Acc. Sen. Spe. AUC (95%CI)

Pneumonia ResNet-18 Scratch 91.11 93.91 83.54 96.58 (95.09–97.81)

ImageNet 90.09 93.68 80.38 96.05 (94.24–97.33)

MD-MoCo 96.58 97.19 94.94 98.48 (97.14–99.30)

MUSCLE−− 96.75 97.66 94.30 99.51 (99.16–99.77)

MUSCLE 97.26 97.42 96.84 99.61 (99.32–99.83)

ResNet-50 Scratch 91.45 92.51 88.61 96.55 (95.08–97.82)

ImageNet 95.38 95.78 94.30 98.72 (98.03–99.33)

MD-MoCo 97.09 98.83 92.41 99.53 (99.23–99.75)

MUSCLE−− 96.75 98.36 92.41 99.58 (99.30–99.84)

MUSCLE 98.12 98.36 97.47 99.72 (99.46–99.92)

MURA ResNet-18 Scratch 81.00 68.17 89.91 86.62 (85.73–87.55)

ImageNet 81.88 73.49 87.70 88.11 (87.18–89.03)

MD-MoCo 82.48 72.27 89.57 88.28 (87.28–89.26)

MUSCLE−− 82.45 74.16 88.21 88.41 (87.54–89.26)

MUSCLE 82.62 74.28 88.42 88.50 (87.46–89.57)

ResNet-50 Scratch 80.50 65.42 90.97 86.22 (85.22–87.35)

ImageNet 81.73 68.36 91.01 87.87 (86.85–88.85)

MD-MoCo 82.35 73.12 88.76 87.89 (87.06–88.88)

MUSCLE−− 81.10 69.03 89.48 87.14 (86.10–88.22)

MUSCLE 82.60 74.53 88.21 88.37 (87.38–89.32)
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3 Experiment

In this section, we present our experimental results to confirm the effectiveness
of MUSCLE on various tasks.

Experiment Setups. In this experiments, we include performance comparisons
on pneumonia classification (Pneumonia) [21], skeletal abnormality classifica-
tion (MURA) [22], lung segmentation (Lung) [18], and tuberculosis detection
(TBX) [23] tasks. We use the training sets of these datasets/tasks to pre-train
and fine-tune the network with MUSCLE or other baseline algorithms, tune the
hyper-parameters using validation sets, and report results on testing datasets.

As the goal of MUSCLE is to pre-train backbones under multi-task/dataset set-
tings, we propose several baselines for comparisons as follows. Scratch: the mod-
els are all initialized using Kaiming’s random initialization [24] and fine-tuned
on the target datasets (introduced in Sect. 2.3). ImageNet: the models are ini-
tialized using the officially-released weights pre-trained by the ImageNet dataset
and fine-tuned on the target datasets. MD-MoCo: the models are pre-trained
using multi-dataset MoCo (introduced in Sect. 2.2) and fine-tuned accordingly;
we believe MD-MoCo is one of our proposed methods and can prove the concepts,

Fig. 2. Receiver Operating Characteristic (ROC) Curves with AUC value (95%CI) on
pneumonia classification (Pne) and skeletal abnormality classification (MURA)

Fig. 3. Results using various pre-training algorithms on lung segmentation, where green
lines indicate ground truth and red areas indicate model prediction results, and the
blue and orange boxes cover regions of the main differences in these results. (Color
figure online)
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as MD-MoCo extends both vanilla MoCo [7] and MoCo-CXR [11] with additional
data pre-processing methods to tackle the multi-dataset issues. MUSCLE−−: all
models are pre-trained and fine-tuned with MUSCLE but with Cross-Task Mem-
orization and Cyclic and Reshuffled Learning Schedule turned off. All models
here are built with ResNet-18 and ResNet-50.

To compare these algorithms, we evaluate and compare Accuracy (Acc.),
Area under the Curve (AUC), Sensitivity (Sen.), Specificity (Sep.) and Receiver
Operating Characteristic (ROC) Curve for Pneumonia and MURA classification
tasks, Dice Similarity Coefficient (Dice), mean Intersection over Union (mIoU)
for lung segmentation (Lung) task, and mean Average Precision (mAP), Average
Precision of Active TB (APactive) and Average Precision of Latent TB (APlatent)
for tuberculosis detection (TBX), all of them at the IoU threshold of 0.5. AUC
values are reported with 95% confidence intervals estimated through bootstrap-
ping with 100 independent trials on testing sets.

Overall Comparisons. We present the results on Pneumonia and MURA classifi-
cation tasks in Table 2 and Fig. 2, where we compare the performance of MUSCLE
with all baseline algorithms and plot the ROC curve. Results show that our pro-
posed methods, including MUSCLE, MUSCLE−− and MD-MoCo can significantly
outperform the one based on ImageNet pre-trained models and Scratch. Fur-
thermore, in terms of overall accuracy (Acc. and AUC), MUSCLE outperforms
MD-MoCo and MUSCLE−− in all cases, due to its advanced continual learning
settings. However, we can still observe a slightly lower sensitivity on the Pneu-
monia classification task and a slightly lower specificity on the MURA delivered
by MUSCLE. Similar observations could be found in Table 3 and Fig. 3, where
we report the performance on lung segmentation and TB detection tasks with
examples of lung segmentation plotted.

More Comparisons. Please note that MD-MoCo indeed surpasses MoCo [7]
and MoCo-CXR [11] (state of the art in X-rays pre-training), in terms of
performance, as it uses multiple datasets for pre-training and solves the data
heterogeneity problem (the performance of MoCo might be even worse than
ImageNet-based pre-training, if we don’t unify the gray-scale distributions of
X-ray images collected from different datasets). We also have tried to replace
MoCo with SimCLR [6], the performance of SimCLR for X-ray pre-training is
even worse, e.g., 87.52% (9.57%↓) Acc. for pneumonia classification.

Furthermore, though MUSCLE is proposed as a “proof-of-concept” solution
and has not been optimized for any single medical imaging task, e.g., using
U-Net for segmentation [26], the overall performance of MUSCLE is still better
than many recent works based on the same datasets. For example, Stephen et
al. (2019) [27] reports a 93.73% (4.42%↓) accuracy for the same pneumonia
classification task and Li et al. (2021) [28] reports a 94.64% Dice (0.73%↓) for the
lung segmentation. For MURA, Bozorgtabar et al. (2020) [29] reports an AUC of
82.45% (6.05%↓), while Liu et al. (2020) [23] reports a 58.70% (4.76%↓) APactive

and a 9.60% (2.61%↓) APlatent for TBX based on FasterRNN. The advantages of
MUSCLE demonstrate the feasibility of using multiple tasks/datasets to pre-train
the backbone with SSL and CL. For more results, please refer to the appendix.
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Ablation Studies. The comparisons between Scratch versus MD-MoCo, between
MD-MoCo versus MUSCLE−−, and between MUSCLE−− versus MUSCLE confirm
the contributions made by each step of our algorithms. Frankly speaking, in
many cases, MD-MoCo achieved the most performance improvement (compared
to ImageNet or Scratch), while continual learning without Cyclic & Reshuffled
Learning Schedule and Cross-Task Memorization may even make MUSCLE−− per-
forms worse, due to over-fitting or catastrophic forgetting. However, MUSCLE,
pipelining MD-MoCo and advanced continual learning strategies, successfully
defends her dominant position and outperforms other algorithms in most cases.

Table 3. Performance comparisons for lung segmentation (lung) and TB Detection
(TBX) using various pre-training algorithms.

Backbones Pre-train Lung TBX

Dice mIoU mAP APActive APLatent

ResNet-18 Scratch 95.24 94.00 30.71 56.71 4.72

ImageNet 95.26 94.10 29.46 56.27 2.66

MD-MoCo 95.31 94.14 36.00 67.17 4.84

MUSCLE−− 95.14 93.90 34.70 63.43 5.97

MUSCLE 95.37 94.22 36.71 64.84 8.59

ResNet-50 Scratch 93.52 92.03 23.93 44.85 3.01

ImageNet 93.77 92.43 35.61 58.81 12.42

MD-MoCo 94.33 93.04 36.78 64.37 9.18

MUSCLE−− 95.04 93.82 35.14 57.32 12.97

MUSCLE 95.27 94.10 37.83 63.46 12.21

4 Discussion and Conclusion

In this work, we present MUSCLE a self-supervised continual learning pipeline
that pre-trains deep neural networks using multiple X-ray image datasets col-
lected from different body parts, e.g., hands, chests, bones and etc., for mul-
tiple X-ray analysis tasks, e.g., TB detection, lung segmentation, and skeletal
abnormality classification. MUSCLE proposes multi-dataset momentum contrastive
learning (MD-MoCo) and multi-task continual learning to tackle the data het-
erogeneity, over-fitting, and catastrophic forgetting problems in pre-training, and
finally fine-tunes the network to adapt every task independently and separately.
Experiment results on 9 X-ray image datasets show MUSCLE outperforms other
pre-training methods, including ImageNet-based and MoCo-based [11] solutions.
We do acknowledge that MUSCLE might NOT be an optimized solution for any
specific task in this study, we however claim MUSCLE as a “proof-of-concept” that
demonstrates the feasibility of using multiple datasets/tasks to pre-train X-ray
models with advanced strategies of self-supervised continual learning.
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