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Abstract—Training images with data transformations, e.g.,
crops, shifts, rotations and color distortions, have been suggested
as contrastive examples to evaluate the robustness of deep neural
networks against data noises [1]. In this work, we propose a
practical framework ContRE (which is the meaning of “against”
in French) that uses Contrastive examples for DNN Robustness
Estimation. Specifically, ContRE follows the assumption in [2], [3]
that robust DNN models with good generalization performance
are capable of extracting a consistent set of features and making
consistent predictions from the same image under varying data
transformations. Incorporating with a set of randomized strate-
gies for well-designed data transformations over the training set,
ContRE adopts classification errors and Fisher ratios on the gen-
erated contrastive examples to assess and analyze the robustness
of DNN models, which correlates to the models’ generalization
performance. To show the effectiveness and efficiency of ContRE,
extensive experiments have been done using various DNN models,
e.g., ResNet, VGGNet, DenseNet, EfficientNet, etc., on three
open source benchmark datasets, i.e., CIFAR-10, CIFAR-100,
and ImageNet, with thorough ablation studies and applicability
analyses. Our experiment results confirm that (1) behaviors of
deep models on contrastive examples are strongly correlated to
what on the testing set, and (2) the robustness that ContRE
calculates is a robust measure of generalization performance
complementing to the testing set in various settings. Codes is
to be publicly available.

Index Terms—Contrastive Examples, Robustness, Generaliza-
tion Performance

I. INTRODUCTION

Deep Neural Networks (DNNs) significantly perform across

various domains, including computer vision, natural language

processing, and acoustics, but estimating their generalization

performance robustly remains a challenge [4]–[7]. The robust-

ness, denoting the capacity to evaluate model performance

on unseen data, can be gauged by using samples from a

disjoint testing set mirroring the same data distribution as the

training set. Thereby, the testing error can approximate the

generalization error, bypassing the intractable expectation of

classification errors across data distributions. Recent efforts

explore intrinsic properties of deep models, such as weight

norms, gradient norms, and local minimum sharpness corre-

lated with generalization performance. Nonetheless, employ-

ing these properties as metrics facilitates evaluation while

preventing overfitting to the testing set in performance tun-

ing [8], although their infirmity persists in contemporary deep

learning tasks, concluding in poor generalization performance

predictability [7].
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Fig. 1: ContRE compares features and prediction results

of original images from the training set with the results of

contrastive examples.

A recent method for evaluating generalization performance

in deep learning models utilizes image transformations, termed

contrastive examples, in training samples [1]. While theoret-

ically supported [9], [10], this approach’s effectiveness may

wane if similar transformations are employed in the training

data augmentation, due to potential overfitting by Deep Neural

Networks (DNNs) [11]. Hence, there is a need for adaptable

data transformations suited for various generalization perfor-

mance measures and different training data augmentations.

In this work, we propose ContRE that uses Contrastive

examples for the Robustness Evaluation of DNN models.

Specifically, ContRE records features and prediction results of

the original training set and what of the contrastive examples

(see Figure 1 for an illustration). For this evaluation, we follow

the assumptions in [2], [12] that a generalizable DNN model

should make consistent and robust prediction for the same

image of different views transformed by varying strategies, as

the model would extract an invariant set of features from the

image. In this way, a model with higher/lower consistency in

prediction results and extracted features under varying data

transformations would be with better/worse robustness. This

robustness measurement is shown to be correlated with gener-

alization ability of DNN models. Hereby, ContRE proposes

to evaluate the generalization performance of DNN models

using the classification accuracy (and Fisher ratio of feature

vectors) on a set of contrastive examples. To generate effective

contrastive examples, ContRE adopts RandAugment [13], to

ensemble tens of commonly-used image transformations in

a stochastic manner, where every original training sample

would be transformed by a sequence of randomly picked-up

operations.

In summary, this work makes contributions as follows:
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• We propose a simple yet effective framework ContRE
that generates contrastive examples using randomized

data transformations on the training data and measures

classification errors (and Fisher ratios) of DNN models

on contrastive samples for the purpose of robustness and

generalization performance evaluations.

• We conduct extensive experiments using various DNN

models on three benchmark datasets, i.e., CIFAR-10,

CIFAR-100 and ImageNet, empirically demonstrating the

strong correlations between the accuracy on contrastive

examples and the one on the testing set.

• Thorough analyses are provided: (1) By breaking down

the data transformation strategies used in ContRE, we

systematically analyze the effect of every single transfor-

mation technique and combination effects of all possible

pairs; (2) We provide applicability analyses to confirm

the versatility of ContRE working with arbitrary models

trained with varying data augmentations; (3) We further

investigate when and why the ContRE an effective

way to estimate the generalization performance of DNN

models.

To the best of our knowledge, this work is the first to

practically assess the relevance of using contrastive examples

for generalization performance of DNN models.

II. RELATED WORK

In this section, we introduce the related work from the

methodology and application perspectives.

a) Contrastive Learning and Contrastive Examples: The

idea of contrastive learning is to pull closer the representations

of different views of the same image (positive pair) and

yet repel representations of different images (negative pair).

Networks are then updated iteratively with positive and nega-

tive pairs through various contrastive learning objectives [2],

[3], [12], [14], [15]. In a contrastive learning framework, a

stochastic data transformation module of generating different

correlated views of the same image is proved to be effective to

representation learning. Besides usages in contrastive represen-

tation learning, data augmentation has also been shown essen-

tial to improve the generalization of DNN models. The trivial

ones, such as random crop, random flip etc, are widely used

for training large DNN models. More recently, automated data

augmentation policies including AutoAugment [16] have been

proposed to select data augmentation methods for boosting the

model performance. Rather than selecting data augmentation

methods and compositions from a search space, RandAugment

[13] proposes to randomly choose a number of augmentation

distortions from a transformation candidate pool with a preset

distortion magnitude.

In this work, we propose to measure the robustness of

DNN models based on the (dis)similarity on features and final

predictions between original images and contrastive examples,

where we follow the RandAugment module to generate con-

trastive examples.

b) Generalization Performance and Robustness: Gener-

alization performance measures the behaviors of models on

unseen data. With the hold-out testing set as a proxy for

measuring the generalization performance, the generalization

gap is defined as the difference between the accuracies on the

training set and the testing set. While previous works devel-

oped bounds for DNN models’ generalization performance [4],

[5], some recent works predict generalization gap from the

statistics of training data or trained model weights. Jiang et

al. [6] approximate the margin in neural networks and train a

linear model on margin statistics to predict the generalization

gap of deep models. Yak et al. [17] build upon the work

by learning DNNs and RNNs in place of linear models.

Instead of exploiting the margins, Unterthiner et al. [18] build

predictors from model weights. Corneanu et al. [19] define

DNNs on the topological space and estimate the gaps from

the topology summaries. Note that ContRE could be loosely

guaranteed through data-dependent theoretical bounds [9] and

potentially related to the local elasticity [10], [20] while

the theoretical adaptation to DNN models should be more

cautiously considered. We leave this as future work.

Another way of analyzing generalization performance is

through complexity measures since a lower complexity often

implies a smaller generalization gap [7], [21]–[26]. The com-

plexity is roughly defined as the measurement based on the

DNN model’s properties such as the norm of parameters and

“sharpness” of the local minima. We refer interested readers

to Jiang et al. [7], where authors did extensive experiments to

test the correlation between 40 complexity measures and deep

learning models’ generalization gaps, suggesting that PAC-

Beyasian bounds [21] and sharpness measure [22] perform

the best overall.

Different from theoretical investigations and complexity

measure of DNN models, ContRE measures the consistency

of features and prediction results between contrastive examples

and original images as generalization performance, which is

data-dependent and practically works well.

III. CONTRASTIVE SAMPLING FRAMEWORK FOR DNN

ROBUSTNESS EVALUATION

For leveraging large-scale unlabeled images, visual con-

trastive learning approaches [2], [3], [27]–[29] propose to

train DNN models for solving the self-supervised contrastive

prediction task that classifies whether each pair of images is

similar or dissimilar [30]. Similar pairs are designed by a

simple yet effective paradigm SimCLR [2], that transforms

original images through various random data augmentation

approaches [13], and then considers the pairs of augmented

samples derived from the same images as similar pairs and

others as dissimilar ones. We call these generated samples as

contrastive examples and the process of generating contrastive

examples as contrastive sampling. Contrastive sampling is

crucial in the self-supervised training of a DNN model that

yields general and discriminative representations.

In this paper, instead of aiming at representation learning,

we propose to investigate the robustness and consistency
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behaviors of (supervised) trained DNN models through our

proposed approach ContRE, the Contrastive sampling frame-

work for DNN Robustness and generalizability Evaluation.

Figure 1 shows the process of ContRE. Specifically, ContRE
first generates contrastive examples using RandAugment [13]

and forwards generated samples into DNN models. Given the

intermediate features and predictions of DNN models with

contrastive examples as input, ContRE compares the results

with original samples as input.

In the rest of this section, we formally introduce the

proposed framework ContRE and the evaluation metrics for

the investigations and analyses, as well as some discussions

about ContRE.

A. Notations

For convenience, we consider a DNN model as composition

of the classifier g and the feature extractor f l, where l indicates

the layer index and is omitted for the last layer before the

classifier. From an underlying data-generating distribution D,

an empirical dataset for training Z and a disjoint testing

set Ztest are drawn. Given a DNN model (with parameters

θ) trained on Z, we can simply denote all the forwarding

results of this DNN model, including intermediate features

f l(Z;θ), the estimates of the DNN model g ◦ f(Z;θ), and

the loss/accuracy on the training set with an objective function

Lθ(Z), as well as the generalization performance Ez∼DLθ(z).
In practice, the generalization performance is measured on the

disjoint set Lθ(Ztest). Moreover, a set of DNN models with

different parameters are considered: {θ1,θ2, ...}.

B. Contrastive Examples

Given the notations, we introduce the proposed framework

ContRE, which considers a number of widely-used data

transformation approaches to generate a different view of

the original dataset as the contrastive sampling process. We

note the contrastive sampling strategy as R and the obtained

contrastive examples as Zs = R(Z) ∼ R(D). R can be any

data transformation method. Besides the trivial ones, ContRE
follows the strategy of RandAugment [13] for generating

contrastive examples.

According to our preliminary experiments, any relevant

image transformation method is effective to the generalization

estimation if the transformed images have not been remem-

bered by the model during training. In reverse, the unseen

transformed images can be always added as data augmentation

techniques for improving the performance. We could not

easily identify the used transformation methods nor regulate

the data augmentation if the access to the training process

is not available. To this end, ContRE adopts the strategy

of RandAugment to increase the difficulty of fitting all the

possible transformed images by the DNN models.

Given the contrastive examples, the primary objective of

ContRE is to exploit the contrastive sampling strategy to an-

alyze and evaluate the robustness of DNN models. To achieve

the goal, with contrastive examples or original images as input,

ContRE thoroughly compares the behaviors of models on the

prediction accuracy and intermediate features. Formally, given

Zs, ContRE computes the intermediate features f l(Z;θ)
and f l(Zs;θ), prediction or loss Lθ(Z) and Lθ(Z

s), across

different architectures and parameters {θ1,θ2, ...}. Given these

features and performances of various DNN models, ContRE
measures their robustness and analyzes the consistency, with

the metrics described below.

C. Metrics to Quantifying Robustness

Despite the strong non-linearity, DNN models exhibit rel-

atively similar/consistent behaviors with similar samples as

input (except the devised adversarial attacks [31]–[34]). For
example, a large crop or a vertical flip of an image rarely
changes the DNN estimates; while a rotation or a severe color
distortion slightly disturbs its predictions. Nevertheless, the
level of robustness differs across models and this difference
may be exploited to investigate the relation with the robustness
and generalization performance. Thus, to evaluate the robust-

ness of DNN models given contrastive examples, we benefit

from two correlation metrics and one feature clustering quality

metric defined as follows

1) Spearman’s Rank Correlation Coefficient: The proposed

framework ContRE provides a good practical estimator of

DNN models’ generalization performance by measuring the

loss/accuracy with contrastive examples as input. Specifically,

given m DNN models, we measure the Spearman’s rank

correlation coefficient, noted as rs between two rank variables:

rs =
cov(X,Y)

σXσY
, (1)

where cov(X,Y) is the covariance, σX and σY are the

standard deviations of the rank variables. Specifically, the

rank variables are converted from {Lθi(Ztest)}i=1,2,...,m and

{Lθi(Z
s)}i=1,2,...,m.

We show in the experimental section that this strong cor-

relation exists in various scenarios, across datasets, hyper-

parameter settings, image transformation techniques, etc.

2) Partial Rank Correlation: Only using correlation as

the measure for association between two variables can be

misleading because their dependence may come from the

associations of each with a third confounding variable. The

problem can be solved by controlling the confounding variable

via partial correlation. Let X, Y and Z be random variables

taking real values, rXY be Spearman correlation between X
and Y, then the partial rank correlation given control variable

Z is:

rXY,Z =
rXY − rXZrYZ√
1− r2XZ

√
1− r2YZ

. (2)

We use the partial correlation to eliminate the effect of training

accuracy {Lθi
(Z)}i=1,2,...,m while investigating ContRE’s

results. The details can be found in the experiment section.

3) Fisher Ratio: To verify the existence of significant cor-

relations on feature level, ContRE also proposes to investigate

the clustering quality of intermediate features. The degree of

separation of features from other classes can be measured ele-

gantly by the Fisher ratio. Given g different classes, there are
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Ni data points in class πi, with class mean x̄i =
1
Ni

∑Ni
j=1 xi,j .

The between class scatter matrix measures mean separation

and the within class matrix measures class concentration by

pooling the estimates of the covariance matrices of each class,

which are defined as:{
Sb =

∑g
i=1 Ni(x̄i − x̄)(x̄i − x̄)T ,

Sw =
∑g

i=1

∑Ni

j=1 Ni(xi,j − x̄i)(xi,j − x̄i)
T .

(3)

Then the Fisher ratio is:

FisherRatio = Trace(S−1
w Sb). (4)

Fisher ratio is a powerful tool for analyzing models’ gen-

eralization capability right before the classifier. We com-

pare features extracted from original samples and con-

trastive examples using Fisher ratio, i.e., {f l(Z;θi)}i=1,2,...,m

and {f l(Zs;θi)}i=1,2,...,m, as part of explanations of why

ContRE works well. The detailed findings are located in the

experiment section.

IV. EXPERIMENTS AND ANALYSES

In this section, we validate, through extensive experiments,

the main claim that Lθ(R(Z)) is strongly correlated to

Lθ(Ztest). We conduct experiments with various networks

on three open source benchmark datasets, and all results

with Spearman correlations and partial correlations support

our findings. Furthermore, we demonstrate the applicability of

ContRE across several practical settings, e.g., model selection

across hyper-parameter choices, across RandAugment-Trained

models, with small-size datasets or within a practical compe-

tition setting. Finally, we provide analyses for investigating

the reasons that ContRE works well as an estimator of DNN

models’ robustness and generalization performance.

A. Experiment Setup

We describe the experiment setups of datasets, networks and

the methods for generating contrastive examples.

1) Datasets: Three of the most popular benchmark datasets

are considered: CIFAR-10, CIFAR-100 and ImageNet. CIFAR

datasets contain 60,000 tiny images of resolution 32×32 while

ImageNet includes over 1.2M natural images. Conventional

split of training and test sets are followed for CIFAR datasets,

while the validation set of ImageNet is used as testing set here.

2) Networks: For evaluating our proposed framework

ContRE, the most popular or the most powerful DNN ar-

chitectures are considered: VGGNet [35], ResNet [36], Wide

ResNet [37], DenseNet [38], ResNeXt [39], ShuffleNet [40],

[41], MNasNet [42], MobileNet [43], [44] and their variants.

We train these DNN models with standard data augmentation

methods, i.e., random crop and random flip, and standard train-

ing hyper-parameters. We also investigate the different data

augmentation methods and different hyper-parameter settings

for training DNN models, and the strong correlation between

Lθ(R(Z)) and Lθ(Ztest) still holds. Generally, models for

CIFAR datasets are smaller than those for ImageNet but the

architectures are shared among models for these datasets.

TABLE I: Correlations between the test accuracy and con-

trastive examples based accuracy on the training set, evaluated

on three datasets CIFAR-10, CIFAR-100 and ImageNet with

14, 14 and 27 DNN models respectively.

CIFAR-10 CIFAR-100 ImageNet

Center Crop 0.702 0.677 0.953
Random Crop 0.722 0.789 0.979
Random Flip 0.702 0.790 0.955
Random Rotation 0.938 0.653 0.910
ContRE (ours) 0.965 0.974 0.970

Moreover, many pretrained models on ImageNet are publicly

available1, which greatly accelerate our setup process.
3) Contrastive Examples: As introduced previously, Ran-

dAugment [13] is used in the ContRE framework to generate

contrastive examples, where we take all the available trans-

formation operations from the open-sourced implementation2.

We note RA NX MY , where X and Y are the two hyper-

parameters to configure in RandAugment: the number of

sequential distortion operations and the magnitude of each

distortion. For example, RA N2 M9 means that 2 operations

will be chosen randomly from all the available operations and

the distortion of magnitude 9 will be applied3.

B. Experiment Results

Strong correlations between the generalization performance

{Lθi(Ztest)}i=1,2,...,m and the accuracy on contrastive ex-

amples {Lθi
(Zs)}i=1,2,...,m, are found across the three eval-

uated datasets, CIFAR-10, CIFAR-100 and ImageNet. Here

we present the detailed experimental results for these three

datasets in comparison with trivial image transformations, such

as center crop, random crop, random flip and random rotation.

As shown in Figure 2 (top and middle), on the CIFAR

datasets, most of the models have achieved close to 100%

accuracy on the training set for training samples transformed

by crop or flip, which have been used during the training

process. For these transformations, the correlations are around

0.7. Random rotation is not used during the training process,

while the samples transformed by random rotation do not

achieve stable correlations: a high correlation coefficient is ob-

tained for CIFAR-10 while a relatively low value for CIFAR-

100. Meanwhile, our proposed approach ContRE consistently

outperforms others by reaching the highest correlation coeefi-

cients for both CIFAR datsets.

The results are different for models on ImageNet. Due to

the tremendous amount of samples and classes, ImageNet

models with the best validation accuracies failed to perfectly

fit the training data. As shown in Figure 2 (bottom), training

accuracies based on the listed operations all correlate well

with test accuracies. Results given by random crop attains the

first place with a correlation of 0.979, followed closely by

ContRE’s 0.970.

1https://pytorch.org/vision/stable/models.html
2https://github.com/ildoonet/pytorch-randaugment
3The maximum magnitude is 30, even which does not transform the image

into a total noise.
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Fig. 2: Spearman correlations between test accuracies and contrastive examples based accuracies on training data, using four

trivial data augmentation techniques and our proposed approach ContRE, evaluated on CIFAR-10, CIFAR-100 and ImageNet.

For DNN models on ImageNet, we use a single mark for the same family of networks due to the clarity and notation reasons.

The experimental results show that ContRE gets high

correlation coefficients Corr (Equation 1) of 0.969 on CIFAR-

10 and CIFAR-100 and 0.970 on ImageNet, indicating that

the grades of the models under the evaluation of ContRE are

significantly correlated to the generalization performances of

these models. Note that this observation is hard to get from

trivial approaches, including random crop, rotation, flip etc.,

because of randomness and instability. Considering these triv-

ial approaches, “Random Rotation” works well on CIFAR-10

but yields a relatively low correlation coefficient on ImageNet.

Similarly, “Random Crop” works well on ImageNet but not

on CIFAR-10 or CIFAR-100. However, across three tasks and

datasets, our approach ContRE perfectly grades the models,

probably thanks to the stability from the expectation over the

randomness. We thus reasonably conclude that ContRE might

have the potential to estimate the generalization performance

of models with the use of training data and the contrastive

techniques.

TABLE II: Partial correlations between test accuracy and

contrastive examples based accuracy on the training set while

controlling training accuracy.

CIFAR-10 CIFAR-100 ImageNet

Random Crop 0.241 0.551 0.766

Random Flip N/A4 0.619 0.228
Random Rotation 0.887 0.190 0.566
ContRE (ours) 0.938 0.962 0.774

C. Analyses

We provide investigations from the partial correlations

controlling the confounding variable and the feature-level

correlations, to dissect the reasons that ContRE works for

estimations of DNN models’ robustness and generalization

performance.

4The correlation between accuracy of training examples after random flip
and original training accuracy is 1, leading to division by 0 in Equation (2).
Similar for “Center Crop” on the training set that is used as training accuracy.
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TABLE III: Correlations between test accuracy and Fisher

ratios of contrastive examples on the training set, evaluated

on three datasets with 14, 14, 27 DNN models respectively.

CIFAR-10 CIFAR-100 ImageNet

Center Crop 0.495 0.754 0.662
Random Crop 0.455 0.780 0.686
Random Flip 0.495 0.754 0.662
Random Rotation 0.736 0.640 0.774
ContRE (ours) 0.767 0.890 0.816

1) Partial Correlations: We observe that the training accu-

racy is well correlated to the testing accuracy on ImageNet,

where the best model cannot fit the training set. This shows

that the training accuracy might be a good estimator of the

generalization performance in some cases. On the other hand,

training accuracy is also related to the accuracy on contrastive

examples because they are directly generated from the training

set. A question naturally follows: is the training accuracy the
key factor for ContRE being a good estimator?

To answer this question, we first define the notion of con-
sistency Cθ(Z

s) as the difference between training accuracy

and contrastive examples based accuracy on the training set

Cθ(Z
s) = Lθ(Z) − Lθ(Z

s). The testing accuracy and the

accuracy on contrastive examples contain a common variable,

i.e., training accuracy Lθ(Z), shown in the decomposition

below: { Lθ(Z
s) = Lθ(Z)−Cθ(Z

s),
Lθ(Ztest) = Lθ(Z)− gap.

(5)

With controlling the effect of this compound variable,

training accuracy Lθ(Z), we compute the partial correlation

between the accuracy on contrastive examples Lθ(Z
s) and

the testing accuracy Lθ(Ztest). Directly estimating the gap

with the consistency fails on ImageNet for the reason that

models fit to ImageNet training set in varying degrees. This

is not a practical issue for two reasons: (1) it will be less

needed to estimate the gap if the generalization performance

is strongly correlated to the training accuracy; (2) few datasets

are in the scale of ImageNet. Nevertheless, the results in

Table II show ContRE still gets relatively strong (partial)

correlations on all the three datasets, while a moderate dif-

ference is observed from the comparison between CIFAR

datasets and ImageNet. We note that in the case of ImageNet,

where the best model cannot perfectly fit the training set, the

training accuracy is directly correlated to the testing accuracy

and plays an important role for generalization performance

estimation. However, for CIFAR datasets, where all (or some)

models get 100% training accuracy, the training accuracy loses

the predictability and the partial correlations controlling the

training accuracy have no large difference compared to the

standard correlations. In summary, the training accuracy is not

the key factor that ContRE works well for the generalization

performance estimation in most cases.

2) Feature-Level Correlations: For complex DNN models,

we further conduct analysis experiments by looking into the

intermediate features of DNN models, computed on the origi-

nal and contrastive examples. For these examples, we compute

the Fisher ratios of features f(Z;θ) before the classifier for all

models, and get the Spearman correlations with test accuracies.

Note that for ImageNet and CIFAR-100 datasets, the number

of data instances in each class is less than the number of

dimensions of feature vectors when the DNN model, for

instance DenseNet, is wide, leading to the non-invertibility of

the within class matrix during the computation of Fisher ratio.

We therefore perform the dimension reduction techniques on

the feature vectors using singular value decomposition (SVD),

reducing the number of dimensions to 64 or 512 for CIFAR-

100 or ImageNet respectively, with most models containing

over 95% of the total variance.

The results in Figure 6 (a) show that Fisher ratios from

ContRE are highly correlated with the generalization perfor-

mance of DNN models on each of the three datasets. We also

conduct experiments to compute the results on models with

the same architecture but different hyper-parameters, shown in

Figure 6 (b). The conclusion also holds for models trained with

different hyper-parameters. The overall numerical comparison

is shown in Table III. It suggests that, among contrastive

examples based on various operations, models that are able to

generate better class-separated features from ContRE samples

are more likely to have better generalization performance.

Intuitively, Fisher ratio, which can be seen as a measure of

the clustering quality, is highly correlated with the final clas-

sification accuracies. Therefore, the high correlation between

ContRE accuracies and generalization performance inherently

comes from the association between ContRE accuracies and

its features’ degree of separation, and that between Fisher ratio

of features and model generalization performance.

D. Ablation Studies

For further showing the stability and effectiveness of

ContRE, we carry out the experiments for ablation studies

on the choices of two hyper-parameters in RandAugment

when generating contrastive examples, and on the compar-

isons between contrastive examples from RandAugment and

from single data transformations or the compositions of two

transformations.

1) Choices of N and M : In our framework ContRE, two

hyper-parameters in RandAugment can be tuned: N denotes

the number of transformations that are to be applied on the

original examples, and M denotes the magnitude of distor-

tions. Though they both represent the amount of distortions,

their effects on ContRE are varied. As shown in IV, we

have tested all the compositions of N = {2, 3, 4} and M =
{4, 9, 15, 20}. A large (M = 15) magnitude of each distortion

leads to a higher correlation but an additional increase from 15

to 20 does not change much. The results match our previous

observations, implying that a weak distortion on the samples

cannot help to tell good classifiers from the bad ones. On the

other hand, applying more transformations at the same time

seems to hurt the performance, especially when M is small.

Therefore, our approach adapts a large value of M = 20 and
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TABLE IV: Spearman’s correlations between test accuracy and

contrastive examples based accuracy on the training set, with

different choices of N and M .

N=2 N=3 N=4

M=4 0.837 0.763 0.503
M=9 0.855 0.833 0.714
M=15 0.974 0.974 0.960
M=20 0.965 0.978 0.938

Fig. 3: Spearman correlations between test accuracy and the

accuracy on contrastive examples generated by single trans-

formations and ContRE.

a smaller value of N = 2, which is proved to be quite robust

across various tasks and datasets.

2) Single Transformations: ContRE generalizes the idea

of contrastive learning to the evaluations of DNN models’

robustness and generalization performance. However, is it

really necessary to use a stochastic module for generating

the contrastive examples for ContRE? Is there any single

transformation that could achieve the desired results? We

answer these questions through the comparison of the effects

by ContRE and each single contrastive technique.

Following the same experimental setup, contrastive ex-

amples are generated under each single transformation with

the same magnitude as ContRE and the experiments are

performed using all DNN models considered previously. The

obtained Spearman correlation coefficients range from -0.297

to 0.988. While a part of single transformations yield correla-

tions higher than 0.9, especially for ImageNet-trained models,

there is no single operation that performs well across the three

datasets. Therefore, choosing a best transformation depends

on the dataset and it is difficult to find a single transformation

that works well across different datasets. In contrast, ContRE
introduces robustness and consistently achieves high perfor-

mance through the expectation over the stochastic module and

by combining several competent candidates.

3) Compositions of Two Transformations: To further prove

the effectiveness and efficiency of ContRE, we conduct simi-

lar experiments on CIFAR datasets using contrastive examples

that are generated by all the possible compositions of two

transformations, obtain the accuracy on various contrastive

Fig. 4: Spearman correlations between test accuracy and the

accuracy on contrastive examples generated by two transfor-

mations on CIFAR-10 (upper) and CIFAR-100 (lower).

examples and show the Spearman correlations with the testing

accuracy in Figure 4. Some observations are shared with

the results from the comparison using single transformations,

that any composition with “Posterize” does not work well

for CIFAR datasets and that any composition with “Rotate”

works well for CIFAR-10 but not for CIFAR-100. A small

part of compositions obtain higher correlations than ContRE.

We argue that searching the optimal composition demands

much computation resource and the optimal choice varies

from different datasets, while ContRE benefits the expectation

over the stochastic module to consistently produce precise

estimation results. We will present in the following that

ContRE is consistently applicable, efficient and effective in

many practical complex situations.

E. Performance on Partial Training Data

In some practical settings, training data are very scarce

while the experiments we have shown are using a large dataset
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with over 100 samples per class. So we here would like

to test the robustness of ContRE by reducing the training

data size to small fraction (20%) and training the DNN

models. When provided with 20% training data, models have

limited information of the true data distributions and the

generalization performances drop by 3-10 percent. Under such

setting, ContRE outperforms trivial approaches by achieving

a correlation coefficient of 0.754. The results indicate the

potential of ContRE in predicting model performances when

models are not trained with abundant data.

F. Comparisons with RandAugment-Trained Models

Given ContRE’s high correlations between the generaliza-

tion performance and the accuracy on contrastive examples of

DNN models that are trained with standard data augmentation

methods, we have observed that the “Random Crop” and “Ran-

dom Flip” that are used for the standard training process do not

provide desired results in our framework. For over-parametric

DNN models, including more data augmentation methods

could usually improve the generalization performance. We thus

ask if the correlation obtained by ContRE mainly benefits

from the image transformation methods that are not used

during training and whether ContRE still performs well when

the generated contrastive examples have already been used

during training.

To answer the questions, we have trained the same set

of DNN models on CIFAR-10 with replacing the standard

data augmentation by the RandAugment module while leav-

ing other training settings unchanged. Then, we repeat the

processing of ContRE and get that ContRE still achieves

a correlation higher than 0.9, with the results in Figure 5

(right) and comparisons in Table V. We note that “Random

Flip” and “Random Rotation” get higher correlations than

ContRE. We argue that single transformations could get high

correlations if they are not used during training, but the

correlation coefficients largely decrease if they have been used

during training, as shown in the previous results. In contrast,

ContRE combines a number of single transformations to

generate contrastive examples and introduces the robustness

from the expectation over the stochastic module. Even with

the models that have seen the contrastive examples during

the training stage, ContRE can also successfully estimate the

generalization performances.

V. EVALUATIONS FOR APPLICABILITY ANALYSES

We have validated our proposed method ContRE on three

popular datasets with standard training processes. In this

subsection, we carry out experiments with practical settings

and demonstrate the applicability of ContRE.

A. Applications to Hyper-parameter Selection

A direct application of ContRE is to find the best model

among models with the same architecture but trained with

different hyper-parameters. We have trained 18 models, all

of them is of the network structure of Wide-ResNet-26-10,

on CIFAR-10 with various choices of batch size (32, 64,

TABLE V: Spearman correlations between test accuracy and

the accuracy on the contrastive examples, for models trained

with different hyperparameter choices, trained with 20% train-

ing data, and trained with RandAugment.

Hyperparameter Subset RandAugment

Center Crop 0.268 0.465 0.723
Random Crop 0.221 0.535 0.738
Random Flip 0.268 0.583 0.978
Random Rotation 0682 0.055 0.960
ContRE (ours) 0.861 0.754 0.916

128), learning rate (0.01, 0.05, 0.1) and weight decay (0.0001,

0.001). Based on the resulting 18 models, ContRE outper-

forms other approaches by achieving a correlation coefficient

Corr of 0.859, see the results in Figure 5 (left) and the com-

parison with other approaches in Table V. The results illustrate

that, besides helping with selecting the best architecture, our

approach can be helpful in the hyper-parameter-tuning stage.

B. Applications to Generalization Gap Prediction [1]

ContRE directly estimates the generalization performance

instead of the generalization gap (the difference between the

training accuracy and the generalization performance). In the

previous experiments, we mainly discussed the estimations of

generalization performance in this work. Meanwhile, under

the general condition that all DNN models equally fit on the

training set [7], ContRE is also capable of providing a good

estimator of the gap.

To further demonstrate the feasibility of ContRE, we

use the experiment settings of “Predicting Generalization in

Deep Learning Competition” at NeurIPS 2020 [1] to evaluate

ContRE on predicting the generalization gap of DNN models

using the contrastive examples of the training set. The com-

petition offers a large number of deep models trained with

various hyper-parameters and DNN architectures trained on

CIFAR-10 or SVHN, while the evaluator of the competition

first estimates the generalization performance of every model

using the proposed measure, then computes the mutual in-

formation score (the higher the better) between the proposed

measures and the (observable) ground truth of generalization

gaps.

In the experiments, we propose to use the difference be-

tween the accuracy based on the original training samples

and the one using contrastive examples generated from the

original training samples with ContRE. For the comparison

reason, we include several baseline measures in generalization

gap predictors, including VC Dimension [45], Jacobian norm

w.r.t intermediate layers [46], distance from the convergence

point to initialization [24], and the sharpness of convergence

point [47], all of these baselines provide a theoretical bound

for the estimated gap. Table VI presents the comparisons

between the proposed measures and baselines. It shows that

the proposed ContRE framework, with estimating the gap

between the accuracy on original training samples and the one

on contrastive examples, significantly outperforms the baseline

methods. Note that our proposed approach ContRE is an
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Fig. 5: Spearman correlations between test accuracy and contrastive sampling accuracy on the training set for Wide-ResNet-

26-10 with different hyperparameter choices (left); for all the models trained with 20% training data of CIFAR10 (middle);

for all the models trained with RandAugment on CIFAR10 (right). Symbols for DNN models are the same as in Figure 2.

TABLE VI: Mutual information scores of different methods

to predict the generalization gap using CIFAR-10 and SHVN.

Methods Prediction Score ↑
VC Dimension [45] 0.020
Jacobian norm w.r.t intermediate layers [46] 2.061
Distance to Initialization [24] 4.921
Sharpness of the convergence point [47] 10.667
ContRE (ours) 13.531

efficient and effective estimator for the generalization perfor-

mance in practice, and that ContRE is a good estimator for

the generalization gap in condition that the training accuracy

be controlled on the same level.

VI. CONCLUSION AND DISCUSSION

In this work, we build a framework ContRE to generate

contrastive examples and measure the consistency of DNN

models’ behaviors with contrastive examples or training exam-

ples as input. This consistency can be exploited to estimate the

generalization performance of DNN models, endowed by the

assumption that robust DNN models with good generalization

performance tends to giving consistent features and predictions

from the same image under varying data transformations. We

adopt RandAugment to generate contrastive examples and

have practically assessed that the proposed ContRE is able to

consistently estimate the generalization performance of various

DNN models on three benchmark datasets. Systematical abla-

tion studies and thorough analyses have also been provided to

demonstrate the versatility of ContRE in complex real-world

situations and to dissect the reasons that ContRE works well

for the estimation.

We further discuss the potential limitations in the estimation

of generalization performance by our proposed framework:

(1) The data transformations may spoil the data and lead

to total random guess in the worst case. We show that

the transformations used by ContRE would not significantly

affect the generalization estimation, by additionally reporting

the correlations between transformed training and testing data,

i.e., Lθ(R(Z)) and Lθ(R(Ztest)) (0.983, 0.903 and 0.989

for CIFAR10, CIFAR100 and ImageNet respectively), but

for further extensions, transformations should be cautiously

chosen. (2) Theoretical analyses of local elasticity [9], [10],

[20] seems related to our approach, but theoretical links

among contrastive examples, generalization performance and

this notion are not available yet. (3) Lack of appropriate data

transformations, it would be difficult to extend to other data

formats, such as texts, audios, graphs etc. Future investigation

on the existing transformations and exploration on new ones

would address this limitation.
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