TL;DR

- We propose a loss measurement **Temporal Output Discrepancy (TOD)** to estimate the loss of unlabeled samples.
- We demonstrate TOD is a lower-bound of accumulated sample loss.
- Based on TOD, we develop an unlabeled data sampling strategy and a semi-supervised learning scheme for active learning.

Background

- **Active learning (AL)** aims to interactively query a human annotator oracle to annotate a small proportion of informative samples in an unlabeled dataset.
- We focus on uncertainty-aware AL, which selects the most uncertain samples in context of a learned model.

TOD: An Effective Loss Estimation Method

- **Temporal Output Discrepancy (TOD):** The discrepancy of outputs of a neural network at different GD iterations.

\[
D^{(T)}_t(x) \triangleq \| f(x; w_{t+T}) - f(x; w_t) \|
\]

- **Why TOD measures the sample loss?**
 i) Firstly, connecting one-step TOD to sample loss \(L(x) \):
 \[
 D^{(1)}_t(x) \leq \eta \sqrt{2L(x)} \| \nabla_w f(x; w_t) \|^2
 \]
 ii) Then for \(T \)-step TOD, we have
 \[
 D^{(T)}_t(x) \leq \sqrt{2} \eta \sum_{t=1}^{T} \left(\sqrt{r_t} \| \nabla_w f(x; w_t) \|^2 \right)
 \]
 iii) Let gradient norm of \(f \) be upper-bounded by a constant \(C \),
 \[
 D^{(T)}_t(x) \leq \sqrt{2T} \eta C \sum_{t=1}^{T} \sum_{t=1}^{T} r_t(x)
 \]

Thus, TOD is a lower bound of square root of accumulated loss \(L(x) \) during \(T \) GD iterations.

TOD-based Active Sampling Strategy

- We further propose an unlabeled data sampling strategy, named **Cyclic Output Discrepancy (COD)**, for active learning. COD estimates the sample loss by measuring the distance of model outputs between two consecutive active learning cycles.

TOD-based Semi-Supervised Active Learning

- We propose a TOD-based unsupervised loss to minimize the distance between the current task model and a baseline model. The parameters of baseline model is an exponential moving average of historical model parameters.

\[
L(x) = \text{task loss} + \text{unsupervised loss}
\]

- The optimization objective of semi-supervised AL consists of task loss and unsupervised loss .

Experiments

- **Performance:** TOD-based AL methods perform well on various image classification and segmentation datasets.

Study on Active Sampling:

- COD-based active sampling strategy outperforms existing AL methods.

Study on Semi-Supervised Learning:

- (i) SSL can improve AL performance; (ii) TOD is effective for SSL.

Efficiency:

- COD is more efficient than previous AL methods, as it only relies on task model and does not introduce extra models.

Table 1: Active sampling efficiency.

<table>
<thead>
<tr>
<th>Method</th>
<th>Cifar10</th>
<th>SVHN</th>
<th>Caltech-101</th>
<th>Extra</th>
<th>Coreset (ICLR’18)</th>
<th>VAAL (ICCV’19)</th>
<th>LL4AL (CVPR’19)</th>
<th>COD (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91.4s</td>
<td>168.7s</td>
<td>48.2s</td>
<td></td>
<td>91.4s</td>
<td>13.0s</td>
<td>32.6s</td>
<td>7.2s</td>
</tr>
<tr>
<td>COD (ours)</td>
<td>7.2s</td>
<td>10.1s</td>
<td>26.9s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Study on SSL methods.

Table 2: Study on SSL methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Cifar10</th>
<th>SVHN</th>
<th>Caltech-101</th>
<th>Extra</th>
<th>Coreset (ICLR’18)</th>
<th>VAAL (ICCV’19)</th>
<th>LL4AL (CVPR’19)</th>
<th>COD (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91.4s</td>
<td>168.7s</td>
<td>48.2s</td>
<td></td>
<td>91.4s</td>
<td>13.0s</td>
<td>32.6s</td>
<td>7.2s</td>
</tr>
<tr>
<td>COD (ours)</td>
<td>7.2s</td>
<td>10.1s</td>
<td>26.9s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.2: COD values are consistent with the real loss values.

Fig.3: Semi-supervised AL.

Fig.4: AL performance of image classification datasets. Blue solid/dashed lines denote our method with/without semi-supervised training.

Fig.5: Study on active sampling.

Fig.6: Study on SSL methods.

Code

https://github.com/siyuhuang/TOD

Contact

Siyu Huang: huangsiyutc@gmail.com