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ABSTRACT
Arbitrary image style transfer is a challenging task which
aims to stylize a content image conditioned on arbitrary style
images. In this task the feature-level content-style trans-
formation plays a vital role for proper fusion of features.
Existing feature transformation algorithms often suffer from
loss of content or style details, non-natural stroke patterns,
and unstable training. To mitigate these issues, this paper
proposes a new feature-level style transformation technique,
named Style Projection, for parameter-free, fast, and effec-
tive content-style transformation. This paper further presents
a real-time feed-forward model to leverage Style Projection
for arbitrary image style transfer, which includes a regu-
larization term for matching the semantics between input
contents and stylized outputs. Extensive qualitative analysis,
quantitative evaluation, and user study have demonstrated the
effectiveness and efficiency of the proposed methods.

Index Terms— Image style transfer, feature fusion, fea-
ture transformation, convolutional neural networks

1. INTRODUCTION

Arbitrary image style transfer [1] is a very challenging task
which aims to synthesize artistic images conditioned on ar-
bitrary styles, where the content-style feature transformation
plays a vital role and a series of content-style transforma-
tion algorithms have been proposed in the literature [2–6].
The widely-used normalization-based methods, including in-
stance normalization (IN) [7], conditional IN (CIN) [8], and
adaptive IN (AdaIN) [9–11], generally normalize the style of
content features to style features. However, only limited style
information, i.e., the first-order statistics of style features, is
injected into the content features. Another widely-adopted
feature-level style transformation method is whitening and
coloring transformation (WCT) [12] which completely peels
off the style information of content features then recovers
with the target style information. Although the whitening
operation was designed to remove style information, it gen-
erates artifacts that content details are also removed unin-
tentionally, leading to unpleasant synthesized results. Both

∗Work done when Siyu Huang and Jun Huan were at Baidu Research.

normalization-based methods and WCT-based methods can-
not well balance the content preserving and style transferring.

In this paper, we propose a new feature-level style trans-
formation technique, named Style Projection, which is in-
spired by the order statistics [13, 14]. The order statistics-
based image processing filters, such as max/min/median fil-
ters and ranked-order filters, can preserve fine content details
of images in applications of noise detection [15, 16], image
denoising [17], and object detection [18]. In this work, we
exploit order statistics for deep neural network-based content-
style feature transformation for the first time, by considering
content/style information as order statistics/scalar values of
features, respectively. In a very simple manner, Style Projec-
tion reorders the style features according to the order of the
content features, such that the correlation of feature values
(shapes, textures, etc.) is provided by the content features,
while the color information is provided by the style features,
enabling a reasonable content-style fusion.

We further present a learning-based feed-forward model
to leverage Style Projection for arbitrary image style trans-
fer in real time. The model works in an encoder-decoder
fashion that stylizes a content image based on arbitrarily
given style images. In experiments, we conduct extensive
studies including quantitative evaluation, qualitative anal-
ysis, ablation studies, and user study, to comprehensively
validate the efficacy of our style transfer framework. The
contributions of this paper are summarized as follows: (1)
We present a new parameter-free feature-level transforma-
tion technique, named Style Projection, for fast yet effective
content-style feature fusion; (2) We present a real-time feed-
forward method for arbitrary style transfer, including a KL
divergence loss for further matching the semantics between
input contents and stylized output; (3) We demonstrate the
effectiveness and efficiency of our proposed methods through
extensive empirical studies.

2. METHOD

2.1. Arbitrary Image Style Transfer

The goal of arbitrary image style transfer is to stylize a
content image conditioned on an arbitrary style image. To
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Algorithm 1 Parameter-Free Style Projection.

Require: content feature map x ∈ RC·H·W

style feature map y ∈ RC·H·W

Ensure: stylized feature map z ∈ RC·H·W

1: ~x ∈ RC·V ← reshape x;
~y ∈ RC·V ← reshape y;

2: index dx, values ~xr ← sort ~x along V ;
index dy , values ~yr ← sort ~y along V ;

3: ~z [:, i]← ~yr [:, dx [i]], i = 1, 2, . . . , V ;
4: z ∈ RC·H·W ← reshape ~z.

address this task, we introduce a learning-based feed-forward
style transfer model. Following the image style transfer prac-
tice in previous literature [9, 12], we embed content and style
images into content and style features with an image en-
coder E. As discussed above, the critical component of our
style transfer model is Style Projection algorithm, which is a
parameter-free feature transformation approach for proper fu-
sion of content and style features. Based on Style Projection,
the content and style features are fused and then reconstructed
as a new stylized image with an image decoder D. Despite
the simplicity of the model, it is effective and there is a lee-
way to incorporate useful tricks, for instance the semantic
matching regularization of KL divergence, to further boost
the style transfer performance. In the following sections, we
first introduce Style Projection algorithm and then discuss the
learning objectives of our style transfer model.

2.2. Style Projection Algorithm

In this work, we introduce Style Projection which is a
simple, fast, yet effective algorithm for content-style fusion.
Given a content feature map x ∈ RC·H·W and a style feature
map y ∈ RC·H·W , where C, H , W are channel, height, and
width respectively, we firstly vectorize x and y across dimen-
sion H and W to obtain features ~x ∈ RC·V and ~y ∈ RC·V ,
where V = H ·W . Then we compute rankings for elements
in ~x and ~y. Afterwards, we reorder ~y by aligning each element
to its corresponding same ranked element in ~x. This actually
reorganizes the style feature ~y according to the sorting order
of the content feature ~x. Then we reshape the adjusted fea-
ture to get z ∈ RC·H·W , which will be treated as the input of
a decoder D to generate the stylized image. The computing
process of Style Projection is shown in Alg. 1.

We propose that the Style Projection module will not lose
the color details of style images, while the structure of content
images are also carried in the transferred features. In the fol-
lowing, we take insight into the style and content preservation
achieved by Style Projection algorithm, respectively.
Style detail preservation. To understand the effectiveness of
Style Projectionon style detail preservation, we investigate the
Gram matrix of images. The Gram matrix G(i, j) of feature

Content / Style No Shuffling Random Shuffling Style Projection

Fig. 1: An empirical study on feature shuffling mechanisms.
“No Shuffling” directly feeds style features to the decoder
without feeding content features or conducting any shuffling
operation. “Random Shuffling” feeds randomly shuffled style
features (shuffled within each channel of feature maps) to the
decoder. “Style Projection” reorders style features according
to order statistics of content features.

map y is formulated as

G(i, j) =
∑
p

y(i, p)y(j, p) (1)

where i and j denote two channels on feature map y, and p
denotes the spatial position. Such that Gy(i, j) is the inner
product between two feature channels.

The Gram matrix G(i, j) can be used to evaluate texture
synthesis algorithms by measuring the texture correlation be-
tween images [1]. Consider the difference between Gram ma-
trices of feature maps y and z,

LGram(y, z) = ||Gy −Gz||2F
=

∑
i,j

||
∑
p

y(i, p)y(j, p)−
∑
p

z(i, p)z(j, p)||2

(2)

Gu et al. [19] theoretically reveals that Eq. 2 is equal to
0 when y and z can be transformed to each other using a
bijective transformation, for instance any shuffling function.
Therefore, the feature shuffling does not alter the Gram ma-
trix of feature. From Eq. 2, we show that the style informa-
tion can be well preserved after style feature reshuffling in our
proposed Style Projection module.
Content structure preservation. Style Projection also pre-
serves the structure of content images. As suggested by [13],
the order of random variables contains effective information
where the order statistics are related to the distribution func-
tion of random variables. In Style Projection module, the style
features are reshuffled according to the order of content fea-
tures, thus the structural relationships in content features can
be implicitly inherited by the reshuffled style features.

To verify this claim, we conduct an empirical study on
feature shuffling mechanisms and the results are shown in Fig.
1. We observe that among the three methods, only Style Pro-
jection is capable of fusing content and style properly. ‘No
shuffling’ of style features shows an exact reconstruction of
the original style image. ‘Random shuffling’ shows a repe-
tition of random style patterns, demonstrating that the style
patterns can be preserved after feature reshuffling. Only Style
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Fig. 2: The scheme of our proposed style transfer framework.

Projection, which reorders the style features based on con-
tent features, shows reasonable image stylization. This study
reveals the effectiveness of Style Projection as it is able to pre-
serve both content and style information during feature trans-
formation. Through Style Projection, the spatial structure
(shape, edge, etc.) of content images and the color/texture
patterns of style images are well fused.

2.3. Style Transfer Model

We illustrate our style transfer model in Fig. 2. The learn-
ing objective of our style transfer model is composed of three
parts, including the style loss, the content perceptual loss, and
the content KL divergence loss. The style loss Ls is used to
match the feature statistics between the style image s and the
stylized image ĉ asLs =

∑N
i=1‖µ, σ(Ei(s))−µ, σ(Ei(ĉ))‖2,

where µ and σ denotes the mean and standard deviation, and
Ei is the intermediate output of the i-th layer of encoder E,
and N is the number of encoder layers. The content percep-
tual loss Lp [20] is used to minimize the pixel-wise feature
distance between the content image c and the stylized image
ĉ as Lp = ‖E(c)− E(ĉ)‖2.

Most image style transfer methods suffer from non-
natural image clues in stylized results. We conjecture this
is partially due to the missing of semantic information such
as brightness. Inspired by the insights provided by generative
models [21], we introduce a distribution matching objective,
Kullback-Leibler (KL) divergence [22], into the style transfer
framework to leverage more semantic information in content
images, as

LKL = KL [E(c) || E(ĉ)] (3)

where c is an input content image and ĉ is the stylized image
produced by decoder D. With the aid of KL divergence, we
regularize D to generate images that contain more semantics
of content images.

Overall, the complete learning objective of our model is
formulated as L = Lp+λLs+κLKL, where λ and κ are the
loss weights of Ls and LKL, respectively. As Style Projec-
tion is a parameter-free method and the added KL divergence
loss only brings negligible extra computing time, our style
transfer approach is highly efficient.

Table 1: Quantitative evaluation of style loss Ls, content loss
Lp, and total loss. The lower the better.

Method Style loss Ls Content loss Lp Total
CNN [1] 0.90 2.51 3.41
StyleSwap [29] 4.87 2.56 7.43
WCT [12] 1.33 4.08 5.41
AdaIN [9] 0.39 2.56 2.95
LinearPropagation [30] 2.86 2.86 5.73
Style Projection 0.38 2.61 2.99
Style Projection + Skip 0.48 2.56 3.04
Style Projection + KL 0.38 2.25 2.63
Style Projection + Skip + KL 0.49 2.09 2.58

3. EXPERIMENTS

3.1. Experimental Setup

Datasets. We adopt the training set of MS-COCO dataset
[23] as the content images and that of WikiArt dataset [24] as
the style images. In training, we resize all input images to the
size of 512×512 and randomly crop each image to 256×256.
All content and style images used for testing purpose are se-
lected from the test set of the two datasets, and the test images
are never observed by the model during training. Our encoder
and decoder networks work in a fully-convolutional manner,
and they can be applied to images of arbitrary size in testing.
Implementation. We implement our style transfer model1

based on the PaddlePaddle framework [25] and release a pre-
trained model as an official PaddleHub tool2. We train our
style transfer model for 160,000 iterations. We use an Adam
optimizer [26] with an initial learning rate of 1e-4 and a learn-
ing rate decay of 5e-5. Unless otherwise specified, the loss
weights λ and κ are set to 10 and 2.5, respectively. Note that
the loss weights are employed to balance the style transfer
and content semantics preservation. More empirical studies
on the KL divergence weight κ are illustrated in the following
ablation studies. We use a batch size of 8 for training.
Networks. The encoder network used in the model is the
VGG-19 network [27] pre-trained on ImageNet [28], and its
weights are not updated during training. The decoder network
is composed of nine ‘Padding-Conv-ReLU’ blocks, except the
last block that has no ReLU layer. Three up-sampling layers
are adopted right after the 1-st, 5-th, and 7-th block to re-
store the input image dimension successively, where the near-
est neighbor interpolation is employed for up-sampling. We
do not use normalization layer in our decoder network since
it will hurt the diversity of synthesized images [9].

3.2. Comparison with State-of-the-Arts

Quantitative evaluation. In Fig. 3, we quantitatively eval-
uate the state-of-the-art arbitrary image style transfer meth-
ods, including Style-Swap [29], WCT [12], AdaIN [9], Lin-
ear Propagation [30]. We investigate the content lossLp, style

1https://github.com/PaddlePaddle/PaddleHub/Stylepro Artistic
2https://www.paddlepaddle.org.cn/hubdetail?name=stylepro artistic
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Content/Style StyleSwap WCT AdaIN LinearProp Ours-1 Ours-2

Fig. 3: Qualitative comparisons between the state-of-the-art content-style transformation modules. Ours-2 adds content skip
connections and KL divergence loss to our Style Projection algorithm (Ours-1) to deliver more appealing images.

Content Style DFR [19] SP

Fig. 4: A comparison of shuffling-based transfer methods.

lossLs and total loss in inference. Our Style Projection shows
competitive results compared with the state-of-the-art style
transfer modules with respect to both style and content loss.
The SP+Skip+KL method presents more superior results than
the other methods and similar style loss as AdaIN, indicating
that the modules proposed in this paper, including Style Pro-
jection and KL divergence loss, work well in arbitrary style
transfer tasks. We also observe that there is a trade-off be-
tween style loss and content loss. Generally, SP+KL and
SP+Skip+KL reach a good balance in such a trade-off.

Qualitative comparison. In Fig. 3 we show stylized images
generated by different methods. The images generated by
WCT [12] have a low fidelity probably due to the whitening
operation which peels off some critical content clues. AdaIN
[9] better reconstructs the content details, however there are
still several ‘non-natural strokes’ caused by only transferring
the mean and standard deviation of the style features. The
images produced by the StyleSwap [29] are too dark proba-
bly due to the way of replacing content features. Our methods
(last two columns) provide more pleasant results. Even using
Style Projection independently (i.e., Ours-1), style informa-
tion is properly transferred while main content is preserved.
SP+Skip+KL (i.e., Ours-2) produces more appealing results
where content details and semantics are better preserved.

Both DFR [19] and SP are reshuffling-based feature trans-
formation methods. A comparison between DFR and Style
Projection is shown in Fig. 4. DFR includes an expensive op-
timization process in its framework, thus it is time-consuming
in image generation (taken about 114 seconds/image). Our
parameter-free Style Projection is able to give appealing styl-
ized results with a high efficiency (0.068 second/image).

Table 2: User study on style transfer methods. “Method
Score” is the percentage of times that users prefer the im-
ages in pairwise comparisons. “SP” denotes Style Projection
and “Full” denotes Style Projection+Skip+KL. “User Con-
sistency” denotes the consistency among users. “Scene” and
“Person” are two categories of content images.

Method Score (%) User Consistency (%)AdaIN SP Full
Scene 32.58 51.89 65.53 68.94
Person 34.47 37.50 78.03 76.52

3.3. User Study

We further conduct a user study to evaluate three differ-
ent methods, including AdaIN, our SP, and our full model
(SP+Skip+KL). We build 24 pairs of synthesized images in-
cluding 8 pairs of AdaIN and SP, 8 pairs of AdaIN and Full,
and 8 pairs of SP and Full. The users are asked to choose
one synthesized image from each pair under the criteria: (1)
whether the image is sharp and clean while its content is close
to that of the content image, and (2) whether the image has
a similar style as the style image. We have collected feed-
backs from 33 individuals and the results are summarized in
Table 2. The ‘Method Score’ is the preference ratio averaged
over all the image pairs and users, and the results indicate
that most users favor the synthesized images of our methods.
Interestingly, for the person images, more users prefer our
full model (78.03%), which indicates that fidelity is deserved
to be well maintained for person images (see Fig. 3).

4. CONCLUSION

In this paper, we have presented a real-time feed-forward
model for arbitrary style transfer. The core is a parameter-
free, fast, and effective feature-level style transformation
algorithm named Style Projection. We have also introduced
the KL divergence loss into our style transfer model for
a regularization of semantic consistency on content struc-
tures. Extensive experiments including quantitative evalua-
tion, qualitative analysis, and user study have validated the
efficacy of our method for arbitrary image style transfer.
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