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ABSTRACT

In this work, we take insight into the dense crowd counting
problem by exploring the phenomenon of cross-scale visual
similarity caused by perspective distortions. It is a quite com-
mon phenomenon in crowd scenarios, suggesting the crowd
counting model to enable a good performance of scale invari-
ance. Existing deep crowd counting approaches mainly fo-
cus on the multi-scale techniques over convolutional layers to
capture scale-adaptive features, resulting in high computing
costs. In this paper, we propose simple but effective pool-
ing variants, i.e., multi-kernel pooling and stacked pooling, to
take place of the vanilla pooling layers in convolutional neu-
ral networks (CNNs) for boosting the scale invariance. Our
proposed pooling modules do not introduce extra parameters
and can be easily implemented in practice. Empirical studies
on two benchmark crowd counting datasets show that the pro-
posed pooling modules beat the vanilla pooling layer in most
experimental cases.

Index Terms— Crowd counting, scale invariance, pool-
ing

1. INTRODUCTION

With the vast demands of public safety and city planning,
recent years have witnessed a great development of crowd
counting [1, 2, 3, 4, 5, 6, 7, 8] in visual intelligence. The
goal of crowd counting is to automatically and precisely es-
timate the number of pedestrians in crowded scenes. Typ-
ically, crowd counting is cast as a crowd density map re-
gression problem [9] within an end-to-end learning scheme
[10, 11, 12]. In practice, a key insight into this problem is that
effective density map regression requires capturing the scale-
invariant crowd feature information from perspective distor-
tions. In this paper, we focus on how to build a simple yet
effective deep learning module for boosting the performance
of perspective scale invariance.

As shown in Fig. 1, the crowd image patches from dif-
ferent perspective scales exhibit the mutually similar visual
properties after resizing. This common phenomenon in crowd
counting delivers a fact of the cross-scale visual similarity

Fig. 1: In dense crowd images, regions of different scales ex-
hibit high visual similarity if we resize them to certain sizes.
This indicates the importance of scale invariance in crowd
counting.

in the perspective direction [13, 14]. Hence, an ideal vision
model is supposed to pursue the goal of scale invariance for
pedestrian number estimation, no matter how a crowd im-
age is resized to other scales, rather than the scale equivari-
ance for general vision models [15, 16]. In the context of
crowd counting, it is a common practice to take the strategy
of adopting multi-scale inputs [17] or multi-branch networks
[18, 18, 19, 20, 21] to enhance the scale invariance capabil-
ity of convolutional neural networks (CNNs). For instance,
the popular Multi-Column CNN [22] and its variants [23]
adapt multi-sized convolution units to visual concepts (e.g.,
heads and pedestrians) of different scales. In principle, the
above-mentioned approaches mainly rely on the multi-scale
techniques over the convolutional layers, resulting in a higher
computational burden.

In contrast, this paper designs lightweight scale-aware
pooling module towards the goal of scale-invariant crowd
counting. So far a series of literature [24, 25, 26] has revealed
the limitations of existing pooling operations in coping with
significant scale changes [27]. Consequently, the vanilla
pooling often suffers from the perspective scale variations
in crowd counting scenarios, as shown in Fig. 1. In this
case, pooling modules with a larger receptive field [28, 29]
are likely to adapt to larger scale variations, and, enabling a
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Fig. 2: An intuitive illustration of the scale invariance brought
by a larger pooling kernel.

stronger scale invariance. Fig. 2 provides an intuitive illustra-
tion of how a larger pooling range enables an invariance with
the input going through scale variations. The feature map af-
ter 2×2 max-pooling varies while the feature map after 4×4
max-pooling presents an invariance.

In this paper, we propose simple yet effective pooling
variants, i.e., multi-kernel pooling and stacked pooling, to
boost the scale invariance of CNNs. Specifically, the multi-
kernel pooling comprises of pooling kernels with multiple
receptive fields to capture the responses at multi-scale local
ranges, and then, concatenating the feature maps together to
its successive layer. Technically, the larger pooling kernels
can provide a wider range of scale invariance for CNNs, while
the fine-grained information is also preserved by smaller
pooling kernels. The stacked pooling is an equivalent form of
multi-kernel pooling by stacking smaller pooling kernels. It
further reduces the computing cost of multi-kernel pooling.

In practice, our proposed pooling modules have the fol-
lowing advantages: 1) Non-parametric: They do not intro-
duce any extra parameters and hyper-parameters into the
model, ensuring a high efficiency in learning; 2) Simple and
flexible: They are succinct and very easy to implement. They
can take place of the vanilla pooling layer at any time if
needed. Empirically, the multi-kernel pooling and stacked
pooling show favorable performance in comparison with
the vanilla pooling. They beat the vanilla pooling layer in
most experimental cases on two benchmark crowd counting
datasets. In addition, studies on pooling kernel sizes further
reveal their effectiveness.

2. OUR APPROACH

The deep CNN based crowd counting models estimate the
pedestrian count in a crowd image by jointly learning the
crowd density map and count. In this work, we improve the
scale invariance of CNNs by introducing very simple yet ef-
fective pooling modules, including multi-kernel pooling and
stacked pooling, to take place of the vanilla pooling layers
in CNNs. In practice, our proposed pooling modules can be
applied to various versions of poolings.

2.1. Multi-Kernel Pooling

In the practice of deep CNNs, a small pooling kernel, e.g.,
k = 2, is commonly used mainly because a larger pool-
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Fig. 3: Multi-kernel pooling with a set of kernels {2, 4, 8}
and a stride of 2. The three pooling kernels are applied on the
input feature map and then concatenated with element-wise
mean.

ing kernel may excessively discard information of the orig-
inal feature map. However, a larger pooling kernel is able to
provide a wider range of scale invariance for CNNs as illus-
trated in Fig. 2. Specifically in crowd counting, image regions
of different scales generally present a high visual similarity.
Thus, in this work we exploit a set of poolings with differ-
ent kernel sizes, i.e., multi-kernel pooling, to boost the scale
invariance of a deep crowd counting model.

The multi-kernel pooling enables a kernel set K com-
prising of different pooling kernel sizes, such as K =
{k1, k2, ..., kn}. We apply the i-th pooling kernel Pki on
feature map X

Yi = X ∗ Pki
(1)

There are many ways to concatenate the output feature maps.
In this work we use element-wise mean because: 1) It keeps
the shape of original feature map; 2) It has been demonstrated
to be effective in various deep architectures; 3) It does not
introduce extra learnable parameters. Following Eq. 1, the
feature maps are concatenated as

Ymulti-kernel =
1

n

n∑
i=1

Yi (2)

In CNNs, we often use a pooling P(s)
k with a sliding window

stride s ≥ 2 and proper paddings to down-sample a feature
map X ∈ RW×H into ↓s Y ∈ RW

s ×
H
s . The multi-kernel

pooling with a down-sampling rate s is written as

↓sYmulti-kernel =
1

n

∑
k∈K

X ∗ P(s)
k (3)

In theory, the multi-sized pooling kernels incorporate re-
sponses of multiple local areas into the output feature map,
thus providing a wider range of scale invariance for CNNs.
In addition, the fine-grained information is also preserved by
those poolings with smaller kernels. Fig. 3 illustrates an
example of the multi-kernel pooling, where the kernel set
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Fig. 4: Stacked pooling with a set of kernels {2, 2, 3}. It is
an equivalent form of multi-kernel pooling shown in Fig. 3
with less computing cost.

Table 1: Time cost of pooling methods (ms). ‘pool layer’ is a
single pooling layer. ‘network’ is the VGG-13 network.

vanilla stacked multi-kernel
pool layer forward 0.11 0.37 0.84

network forward 6.1 6.6 7.7
backward 13.6 14.1 15.7

K = {2, 4, 8} and the stride s = 2. In empirical studies,
this configuration also shows the best performance in most
cases.

2.2. Stacked Pooling

To reduce the computing cost of multi-kernel pooling, we pro-
pose to use its equivalent form, named stacked pooling. The
stacked pooling is a stack of pooling layers, where the inter-
mediate feature maps are consecutively computed as

↓s′iY
′

i = Y
′

i−1 ∗ P
(s

′
i)

k
′
i

(4)

Specifically, Y
′

0 = X is the input feature map. Kernel size k
′

i

corresponds to ki with a certain transformation. Stride s
′

i=1 =

s and s
′

i>1 = 1. Following Eq. 4, the output of stacked
pooling concatenates the intermediate feature maps as

↓sYstacked =
1

n

n∑
i=1

↓s′iY
′

i (5)

Fig. 4 shows a diagram of stacked pooling which is ex-
actly equivalent to the example of multi-kernel pooling shown
in Fig. 3. The stacked pooling is much more efficient than
multi-kernel pooling because its pooling operations are com-
puted on down-sampled feature maps, except for its first pool-
ing kernel. Table 1 summarizes the time cost of different pool-
ing methods w.r.t a 256×256 input feature map. We see that
the stacked pooling shows a much better computing efficiency
than multi-kernel pooling. On a VGG-13 network [30], the
forward and backward time of stacked pooling is close to that
of vanilla pooling, thus, ensuring its practicability.

3. EXPERIMENTS

3.1. Experimental Setup

In this work, we conduct empirical studies1 based on PyTorch
framework [31] on two popular benchmark crowd counting
datasets: ShanghaiTech [22] and WorldExpo’10 [32]. Both
two datasets are very challenging due to diverse scene types
and varying density levels. Follow the convention of exist-
ing literatures, we use mean absolute error (MAE) and mean
squared error (MSE) to evaluate the performance of different
crowd counting methods. The MAE metric indicates the ac-
curacy of crowd estimation algorithm, while the MSE metric
indicates the robustness of estimation.

We evaluate our proposed pooling module on different
backbone CNNs. We exploit three types of network architec-
tures, i.e., Base-Net, Wide-Net, and Deep-Net. The Base-Net
is relatively small and it has three variants, namely “S” and
“M”, coming from the columns of Multi-Column CNN [22]
and having different convolutional kernel sizes. The Wide-
Net widens the Base-M Net by using more channels of feature
maps. The Deep-Net follows the well-known VGG-13 net-
work [30] with slight modifications. We use CNNs of diverse
depths, widths, and convolutional kernel sizes for a compre-
hensive evaluation of our method.

3.2. Quantitative Comparison

ShanghaiTech Dataset Table 3 quantitatively compares
methods including the baselines in previous crowd counting
work and our proposed methods. Stacked pooling obviously
outperforms the baselines and vanilla pooling by showing a
superior performance in most settings of network architec-
tures and metrics. The evaluated backbone networks cover
the commonly used CNN architectures, from small to large,
and from shallow to deep. The Deep-Net is empirically better
than Wide-Net and Base-Nets on ShanghaiTech dataset. Ex-
perimental results show that the Deep-Net is 3.7% and 11.5%
better under MAE by adopting stacked pooling than vanilla
pooling. In theory, the stacked pooling does not introduce ex-
tra model parameters and preserves more information during
the down-sampling process, thus benefiting the information
flow in deep layers.
WorldExpo’10 Dataset Table 2 quantitatively compares the
pooling modules on WorldExpo’10 dataset. MAE results on
five different test scenes are shown respectively. We evaluate
the Wide-Net and the Deep-Net for they are more often used
in practice. In this experiment, the MAEs across different
scenes are quite different due to diverse crowd densities of the
scenes. The Deep-Net still performs better than the Wide-Net
w.r.t. the average MAE. The stacked pooling performs better
than the vanilla pooling w.r.t the average MAE and most of
the testing scenes, indicating that the stacked pooling is as a

1Project codes are available at https://github.com/siyuhuang/crowdcount-
stackpool
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Table 2: Crowd counting performances on ShanghaiTech
dataset. The first group includes baseline methods in previ-
ous work. The second group compares vanilla pooling and
stacked pooling on various backbone network architectures.

Method ShanghaiTech-A ShanghaiTech-B
MAE MSE MAE MSE

MCNN [22] 110.2 173.2 26.4 41.3
CMTL [1] 101.3 152.4 20.0 31.1

TDF-CNN [33] 97.5 145.1 20.7 32.8
BSAD [6] - - 20.2 35.6

DecideNet [3] - - 21.5 32.0

Base-S +vanilla 142.42 225.21 27.64 49.22
+stacked 127.57 197.75 22.27 41.45

Base-M +vanilla 121.71 192.74 29.45 51.88
+stacked 116.06 182.61 26.03 46.11

Wide +vanilla 122.22 198.23 28.21 51.70
+stacked 113.71 181.52 26.42 47.69

Deep +vanilla 97.63 153.26 21.17 39.20
+stacked 93.98 150.59 18.73 31.86

Table 3: MAE performances on five test scenes of World-
Expo’10 dataset.

Method #1 #2 #3 #4 #5 Ave

Wide +vanilla 5.01 18.96 14.76 21.36 14.57 14.95
+stacked 4.72 22.62 19.85 14.21 8.43 13.98

Deep +vanilla 4.08 18.74 20.68 23.28 6.84 14.74
+stacked 3.26 12.39 13.97 31.41 3.50 12.92

whole better than the vanilla pooling for crowd images with
diverse densities and various scenes.

3.3. Qualitative Results

We qualitatively compare vanilla and stacked pooling by vi-
sualizing the density maps, as shown in Fig. 5. Although the
only difference between the models is their pooling layers,
we can see that there are obvious differences between density
maps of the two models on the following aspects: (1) Sharp-
ness. One main difference lies in the sharpness of the density
maps. The density maps of stacked pooling are much sharper
and clearer, indicating a better fitting to ground-truth density
maps which are often sharp (Gaussian kernel σ = 4 in our ex-
periments). 2) Robustness to noises. For instance, there is an
evident error on bottom of density map #1 of vanilla pooling
due to the dense textures of the woman’s clothes. On top of
density map #2 of vanilla pooling, some chairs are mistakenly
recognized as crowds. The density maps of stacked pooling
avoid these mistakes and present a better robustness to differ-
ent types of noises. (3) Robustness to scale variations. Within
image #2, there are severe scale variations among different
image parts. The corresponding density maps of stacked pool-
ing show more distinct responses, indicating a better robust-
ness to scale variations. It is in line with the motivation of the
propose of stacked pooling.

3.4. Empirical Study on Pooling Kernel Sizes

We further conduct empirical study on the configuration of
pooling kernel setK based on Base-M Net on ShanghaiTech-

Fig. 5: Visualization of density maps. The three columns
show crowd images, density maps from vanilla pooling, and
density maps from stacked pooling, respectively.
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Fig. 6: Empirical studies on kernel sets of multi-kernel pool-
ing. The MAE, vs. the density groups from lower density to
higher density.

A,B dataset. As shown in Fig. 6, four different kernel sets,
including the vanilla pooling kernel {2} and the multi-kernel
pooling kernel sets {2, 4}, {2, 4, 8}, {2, 4, 8, 16}, are eval-
uated. We group the test images according to ground-truth
pedestrian numbers and show the MAE of density groups
from lower density to higher density. Fig. 6 shows that vanilla
pooling performs worse than multi-kernel pooling on higher
density group of ShanghaiTech-A dataset and also worse on
the entire ShanghaiTech-B dataset. Among the multi-kernel
pooling kernel sets, set {2, 4, 8} performs the best with ro-
bustness on all density levels. Therefore, we employ kernel
set K = {2, 2, 3} as the default experimental configuration
of stacked pooling module in this paper.

4. CONCLUSION

In this work, we have proposed simple, flexible, but effective
variants of vanilla pooling module, i.e., multi-kernel pooling
and stacked pooling, to boost the scale invariance of CNNs
and improve crowd counting performances. The proposed
pooling modules exploit a larger receptive field to enable
a stronger invariance for the significant scale variations in
crowd images. In experiments, the proposed pooling modules
are efficient and easy to implement, showing better perfor-
mance than the vanilla pooling layer in most experimental
cases on benchmark crowd counting datasets.
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