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ABSTRACT
Low-light image enhancement (LLIE) is a pervasive yet challenging
problem, since: 1) low-light measurements may vary due to differ-
ent imaging conditions in practice; 2) images can be enlightened
subjectively according to diverse preference by each individual. To
tackle these two challenges, this paper presents a novel deep rein-
forcement learning based method, dubbed ReLLIE, for customized
low-light enhancement. ReLLIE models LLIE as a markov decision
process, i.e., estimating the pixel-wise image-specific curves sequen-
tially and recurrently. Given the reward computed from a set of care-
fully crafted non-reference loss functions, a lightweight network is
proposed to estimate the curves for enlightening of a low-light im-
age input. As ReLLIE learns a policy instead of one-one image trans-
lation, it can handle various low-light measurements and provide
customized enhanced outputs by flexibly applying the policy differ-
ent times. Furthermore, ReLLIE can enhance real-world images with
hybrid corruptions, e.g., noise, by using a plug-and-play denoiser
easily. Extensive experiments on various benchmarks demonstrate
the advantages of ReLLIE, comparing to the state-of-the-art meth-
ods. (Code is available: https://github.com/GuoLanqing/ReLLIE.)
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Figure 1: (a) Most of the existing LLIE methods produce one-
one image translation; (b) We propose a customized LLIE
scheme using the ReLLIE method.

1 INTRODUCTION
Low-light images captured under insufficient lighting conditions
are pervasive in real-life scenarios due to inevitable environmen-
tal/technical constraints. Suffering from compromised aesthetic
quality and unsatisfactory transmission of information, such low-
light images are forbidden from many computer vision applica-
tions which therefore motivate plenty of low-light image enhance-
ment (LLIE) methods [4, 6, 8, 10, 16, 30, 31]. Based on Retinex the-
ory [12, 24, 32], a low-light image can be modeled by the following
degradation process:

𝑆𝑙𝑜𝑤 = 𝑅 ◦ 𝐼𝑙𝑜𝑤 + 𝑛𝑎𝑑𝑑 , (1)

where 𝑆𝑙𝑜𝑤 is the low-light image, 𝑅 denotes the underlying re-
flectance, 𝐼𝑙𝑜𝑤 is the insufficient illumination, 𝑛𝑎𝑑𝑑 is the additive
noise, and ◦ denotes the element-wise multiplication. The LLIE task
aims to recover the “optimal” illumination 𝐼𝑜𝑝𝑡 from the observation
𝑆𝑙𝑜𝑤 with the consistent reflectance 𝑅, meanwhile, suppressing the
noise 𝑛𝑎𝑑𝑑 . Most of the existing methods establish a one-one image
translation model under the assumption that there exists only one
deterministic output for an input. However, as an intrinsic nature,
the LLIE task is complicated in practice, since both 𝑆𝑙𝑜𝑤 and 𝐼𝑜𝑝𝑡
may be diverse for different individuals/applications. As shown in
Fig. 1, an LLIE method should be more customized that it can 1)
handle inputs 𝑆𝑙𝑜𝑤 with varied degrees of degeneration (which are
possibly different from the training data) and 2) provide candidate
outputs with different subjective 𝐼𝑜𝑝𝑡 so as to meet the preference
of different users.
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In this paper, we present a deep reinforcement learning (DRL)
based method named ReLLIE, to achieve more customized LLIE
results. Instead of simply performing one-one paired image transla-
tion, ReLLIE reformulates LLIE as a sequential image-specific curve
estimation problem. Specifically, ReLLIE takes a low-light or inter-
mediate image as input and produces second-order curves as its
output at each step following a learned policy. The policy is param-
eterized by a lightweight fully convolutional network and trained
using a set of non-reference loss functions specially designed for
LLIE. In a recurrent manner, ReLLIE employs the image-specific
curves to deliver a robust and accurate dynamic range adjustment.

To the best of our knowledge, ReLLIE is the first non-reference
DRL based method for pixel-wise LLIE. Compared to the exist-
ing methods, ReLLIE has the following advantages. Firstly, ReLLIE
learns a more flexible stochastic policy other than the determinis-
tic one-one image translation. It can deal with inputs of different
low-light degrees and provide customized enhancement outputs.
The number of enhancement steps can be flexibly determined by
the users (i.e. less or more than which used in training). Secondly,
while existing deep LLIE methods require large-scale paired images
or additional high-quality images for training which are expen-
sive to collect. ReLLIE adopts non-reference loss functions as its
reward function such that it does not require any paired or even
unpaired data in its training process. Therefore, ReLLIE enables
non-reference [6] and zero-shot [6] image enlightening which are
more flexible for real-world scenarios. Thridly, ReLLIE can be flexi-
bly equipped with additional enhancement modules, e.g., denoiser,
to tackle the hybrid image degeneration according to personalized
preference. In extensive experiments, we show that ReLLIE can per-
form on par with other existing LLIE methods that require paired or
unpaired data for training. ReLLIE also achieves the state-of-the-art
performance on zero-shot scenarios.

Our contributions are summarized as follows.
(1) Recognizing the gap between real-world scenarios and the

limitations of existing LLIE methods, we present a DRL based
lightweight framework namely ReLLIE, towards a more cus-
tomized LLIE scheme.

(2) Accompanied with ReLLIE, we propose a new non-reference
LLIE loss namely channel-ratio constancy loss (CRL) and a
new channel dependent momentum update (CDMU) mod-
ule, for training more robust LLIE models. We also propose
enhancement-guided refinement (RF) module to handle the
additive noise in LLIE scenarios.

(3) Extensive experiments show that the proposed ReLLIE can
be effectively applied to zero-shot and unsupervised LLIE
benchmarks.

2 RELATEDWORK
2.1 Deep Reinforcement Learning for Image

Restoration
Recently, DRL has gathered considerable interest in image process-
ing tasks. For instance, Yu et al. [26] proposes RL-Restore to learn
a policy for selecting appropriate tools from predefined toolbox to
progressively restore the quality of a corrupted image. However, it
requires sufficient paired training data to train the agent using L2
loss function. More related to this work, Park et al. [19] proposes a

DRL based color enhancement method to tackle the need of paired
data via a “distort-and-recover” training scheme. Their scheme only
requires high-quality reference images for training instead of in-
put and retouched image pairs. In parallel with [19], Hu et al. [9]
enables a paired image-free photo retouching method with DRL
and generative adversarial networks (GANs). While these methods
focus on global image restoration, Furuta et al. [3] proposes pixelRL
to enable pixel-wise image restoration which is more flexible. More
recently, Zhang et al. [29] proposes R3L, which applies DRL to
pixel-wise image denoising via direct residual recovery. However,
the aforementioned methods all require the external set of “high-
quality” training images, which can be highly limited in practice.
Furthermore, no work to date has exploited DRL for LLIE problem.

2.2 Low-Light Image Enhancement
The LLIE task aims to increase the image visibility so as to benefit
a series of downstream tasks including classification, detection,
and recognition. Histogram equalization (HE) [1] and its follow-
ups [14] achieve uniformly contrast improvement by spreading out
the most frequent intensity values, providing undesirable amplified
noise. Later on, Retinex theory [12], which assumes an image can
be decomposed into reflectance and illumination, has been widely
used in traditional illumination-based methods [2, 8]. For instance,
NPE [23] jointly enhances contrast and illumination, and LIME [8]
proposes a structure-aware smoothing model to estimate the il-
lumination map. These hand-craft methods impose priors on the
decomposed illumination and reflectance, which achieve impressive
results in illumination adjustment but presenting intensive noises
and artifacts.

Recently, the deep learning based methods commonly apply
high-quality normal-light ground truth as guidance to learn how
to improve low-light image [16, 24, 30]. LL-Net [16] proposes a
stacked auto-encoder to simultaneously conduct denoising and en-
hancement using synthesized low/normal-light image pairs. How-
ever, the distribution of synthetic data inevitably deviates from
real-world images due to the domain gap, leading to severe perfor-
mance degradation when transferring to real-world cases. Later on,
Wei et al. [24] collects a real-world dataset with low/normal-light
image pairs, based on which the Retinex-Net is proposed to de-
compose images into illumination and reflectance in a data-driven
way. Following that, various other neural networks [25, 30] have
been proposed for supervised LLIE. More recent methods [10] focus
on unsupervised LLIE which directly enlightens low-light images
without any paired training data. The very recent Zero-DCE [6]
trains the deep LLIE model using non-reference losses. However,
existing deep methods produce one-one image mapping for LLIE,
while neglecting different low-light imaging conditions in practice
and diverse subjective preference by each individual.

Our proposed ReLLIE is significantly different from other coun-
terparts by achieving a more customized LLIE via learning a sto-
chastic enhancement policy rather than the one-one image transla-
tion model. The enhancement operation can be conducted multiple
times, which is highly flexible for real-world scenarios. In addition,
ReLLIE can be applied to zero-shot and unsupervised LLIE scenarios
by employing the non-reference losses as reward function.
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Figure 2: Illustration of the ReLLIE pipeline by taking the 𝑡-th enhancement step as an example.

3 PROBLEM DEFINITION
3.1 LLIE via Curve Adjustment
LLIE can be achieved by human experts via applying the curve
adjustment in photo editing software, where the self-adaptive curve
parameters are solely dependent on the input images. The optimal
curves for challenging low-light images are often of very high order.
Zero-DCE [6] suggests this procedure can be realized equally by
recurrently applying the low-order curves. In this work, we apply
a second-order light enhancement curve (LEC) at each step, which
can be formulated as:

LE(𝐼 (x);A(x)) = 𝐼 (x) + A(x)𝐼 (x) (1 − 𝐼 (x)), (2)

where 𝐼 is the input low-light image and x denotes the pixel coordi-
nates. 𝐿𝐸 (𝐼 (x);A(x)) outputs the enhanced image at x, using the
learned feature parameter A(x), which has the same size as the im-
age. LE can be applied multiple times to approximate higher-order
LEC. At the 𝑡-th step (𝑡 ≥ 1), the enhanced output is:

LE𝑡 (x) = LE𝑡−1 (x) + A𝑡 (x)LE𝑡−1 (x) (1 − LE𝑡−1 (x)), (3)

which models the enhancement of a low-light image as a sequen-
tial decision making problem by finding the optimal pixel-wise
parameter map A𝑡 (x) at each step 𝑡 .

3.2 LLIE as Markov Decision Process
Based on (3), we show that LLIE can be formulated as a markov
decision process (MDP) [21] consisting of the task-specific state,
action and reward.
state: At each step 𝑡 , the low-light image 𝐼𝑡 ∈ R is the state (𝑠𝑡 ∈ S),
where 𝑡 = 0 denotes the initial state with raw inputs and 𝑡 ≥ 1 de-
notes the intermediate states with partially enhanced images from
the previous step. action: The action at 𝑠𝑡 is to select a parameter
𝛼𝑡 (x) for the LEC of each pixel, where 𝛼𝑡 (x) is constrained in a
predefined range A and all 𝛼𝑡 constitute a parameter map A𝑡 (x).
Applying a sequence of parameter maps to the input raw images
results in a trajectory 𝑇 of states and actions:

𝑇 = (𝑠0,A0, 𝑠1,A1, · · · , 𝑠𝑁−1,A𝑁−1, 𝑠𝑁 ,A𝑁 ),

where𝑁 is the number of steps, and 𝑠𝑁 is the stopping state. reward:
The reward 𝑟 : S × A → R evaluates the actions given a state.
Our goal is to obtain a policy 𝜋 that maximizes the accumulated
reward during the MDP. To this end, we employ a stochastic policy
agent parameterized by 𝜋𝜃 (A𝑡 |𝑠𝑡 ) with trainable parameters 𝜃 . The
policy 𝜋𝜃 : S → P(A) maps the current state 𝑠𝑡 ∈ S to P(A) the
set of probability density functions over the actions, as 𝑃 (A𝑡 |𝑠𝑡 ).
In summary, when an agent enters a state, it samples one action
according to the probability density functions, receives the reward,
and transits to the next state.

More specifically, given a trajectory 𝑇 , the return 𝑟𝛾
𝑘
is the sum-

mation of discounted rewards after 𝑠𝑘 :

𝑟
𝛾

𝑘
=

𝑁−𝑘∑
𝑘′=0

𝛾𝑘
′
𝑟 (𝑠𝑘+𝑘′,A𝑘+𝑘′), (4)

where 𝛾 ∈ [0, 1] is a discount factor, which places greater impor-
tance on rewards in the nearer future. To evaluate a policy, we have
the following objective:

𝐽 (𝜋𝜃 ) = E𝑠0∼S0 [𝑟
𝛾

0 |𝜋𝜃 ], (5)

where 𝑠0 is the input image and S0 is the input distribution, e.g.,
a dataset. Intuitively, the objective in Eq. 5 describes the expected
return over all possible trajectories induced by the policy 𝜋𝜃 . The
goal of the agent is to maximize the objective 𝐽 (𝜋𝜃 ), which is related
to the final image quality defined by reward 𝑟 , since images (states)
with a higher quality are more greatly rewarded.

4 PROPOSED RELLIE
4.1 Agent
With the MDP formulation of LLIE, we can apply a DRL based agent
to conduct such task. Inspired by [3], we employ fully convolutional
networks (FCNs) based asynchronous advantage actor-critic (A3C)
[18] framework as our stochastic policy agent. The overall frame-
work of ReLLIE is depicted in Fig. 2. In A3C, we use a policy network
𝜋𝜃 and a value network 𝑉𝜃𝑣 to make DRL training more stable and
efficient [22]. The FCN-based encoder EFCN extracts the features
of the input image 𝐼𝑡 then outputs 𝑠𝑡 , the representation of state 𝑡 .
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EFCN is shared by both 𝜋𝜃 and 𝑉𝜃𝑣 . Taking 𝑠𝑡 , the policy network
𝜋𝜃 outputs the probability 𝑃 (A𝑡 |𝑠𝑡 , 𝜃𝜋 ), from which a parameter
map A𝑡 (x) is sampled. The value network outputs 𝑉𝜃𝑣 (𝑠𝑡 ) which
is an estimation of the long term discounted rewards:

𝑉𝜃𝑣 (𝑠𝑡 ) = E𝑠0=𝑠𝑡
[
𝑟
𝛾

0
]
. (6)

We also include a skip link in ReLLIE tomake the update of the input
image 𝐼𝑡 a weighted sum of raw input image 𝐼0 and the enhanced
one. The update process is

𝐼𝑡 = 𝜔𝐿𝐸𝑡 (x) + (1 − 𝜔)𝐼0, (7)

where 𝜔 is a tunable parameter and empirically set as 0.8. After
color enhancement, our framework includes an optional denois-
ing module (which can be arbitrary image enhancing method) for
further enhancement.

Without loss of generality, we consider the one-step learning
case (𝑁 = 1) here for convenience. The gradients of the parameters
of these two networks 𝜃𝜋 ,𝜃𝑣 are calculated as:

𝑟
𝛾
𝑡 = 𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1),

𝑑𝜃𝑣 = ∇𝜃𝑣 (𝑟
𝛾
𝑡 −𝑉𝜃𝑣 (𝑠𝑡 ))

2,

𝑑𝜃𝜋 = −∇𝜃𝜋 log 𝑃 (A𝑡 |𝑠𝑡 , 𝜃𝜋 ) (𝑟𝛾𝑡 −𝑉𝜃𝑣 (𝑠
𝑡 )) .

(8)

Action space. As mentioned in Section 3.2, the action for state 𝑠𝑡
selects a parameter 𝛼𝑡 (x) for LEC of a pixel, where 𝛼𝑡 (x) is con-
strained in a predefined rangeA and all 𝛼𝑡 constitute the parameter
mapA𝑡 (x). The rangeA is critical for the performance of our agent,
since a too narrow range results in a limited enhancement while
a too wide one results in a exhaustively large search space. Here,
we empirically set the range A ∈ [−0.3, 1] with graduation as 0.05.
This setting ensures that 1) each pixel is in the normalized range of
[0, 1] and 2) LEC is monotonous. Meanwhile, it alleviates the cost
of searching suitable LEC for low-light image enhancement. Fig. 3
shows that LEC can effectively cover the pixel value space under
the proposed action space setting, with respect to different choices
of 𝑁 .
Reward.Many metrics have been proposed for image quality as-
sessment, e.g., the L2 distance between enhanced/groundtruth out-
puts and the adversarial loss learned from a predefined set of “high-
quality" images. In this work, we adopt four non-reference losses
to assess an enhanced image and use the negative weighted sum of
them as the reward to train our agent. On one hand, the using of non-
reference losses gets rid of the need of expensively collected paired
data and even does not require the so-called “high-quality” images.
On the other hand, a weighted sum of different non-reference losses
introduces more flexibility for user preference.

4.2 Non-Reference Losses
For zero-reference LLIE, spatial consistency loss, exposure control
loss, and illumination smoothness loss are exploited in [6]. In addi-
tion to these losses, in this work we propose a new non-reference
loss, namely channel-ratio constancy loss (CRL), for more robust
and effective learning of zero-reference LLIE models. We discuss
the details of the four losses in the following.
Spatial consistency loss. The spatial consistency loss 𝐿𝑠𝑝𝑎 en-
courages the preservation of the difference among neighboring
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Figure 3: Illustration of how the adjustment ranges with dif-
ferent 𝑁 and action range A ∈ [−0.3, 1].

regions during the enhancement:

𝐿𝑠𝑝𝑎 =
1
𝐾

𝐾∑
𝑖=1

∑
𝑗 ∈Ω (𝑖)

( |𝑌𝑖 − 𝑌𝑗 | − |𝐼𝑖 − 𝐼 𝑗 |)2, (9)

where 𝐾 is the number of local region and Ω(𝑖) is the four neigh-
boring regions (top, down, left, right) centered at the region 𝑖 . 𝑌
and 𝐼 denote the average intensity value of the local region in the
enhanced version and input image, respectively. Here, the local
region is set to 4x4 empirically.
Exposure control loss. The exposure control loss 𝐿𝑒𝑥𝑝 measures
the distance between the average intensity value of a local region
to a predefined well-exposedness level 𝐸, i.e., the gray level in the
RGB color space [17]. It is written as:

𝐿𝑒𝑥𝑝 =
1
𝑀

𝑀∑
𝑘=1

|𝑌𝑚 − 𝐸 |, (10)

where𝑀 represents the number of non-overlapping local regions
of size 16×16, 𝑌𝑚 is the average intensity value of a local region𝑚
in the enhanced image. According to [6], 𝐸 is set to 0.6.
Illumination smoothness loss. To avoid aggressive and sharp
changes between neighboring pixels, we employ illumination smooth-
ness loss 𝐿𝑡𝑣𝐴 to control the curve parameter map A at every state,
as:

𝐿𝑡𝑣𝐴 =
1
𝑁

𝑁∑
𝑡=1

∑
𝑐∈𝜖

( |∇𝑥A𝑐𝑡 | + |∇𝑦A𝑐𝑡 |)2, 𝜖 = 𝑅,𝐺, 𝐵, (11)

where 𝑁 is the number of iteration and ∇𝑥 and ∇𝑦 denote the
horizontal and vertical gradient operations, respectively.
Channel-ratio constancy loss. In addition to the above three
losses, we propose a channel-ratio constancy loss 𝐿𝑐𝑟𝑙 to constrain
the ratio among three channels to prevent potential color deviations
in the enhanced image. CRL 𝐿𝑐𝑟𝑙 is formulated as:

𝐿𝑐𝑟𝑙 =
∑

( | 𝐼𝑅
𝐼𝐺

− 𝑌𝑅

𝑌𝐺
| + | 𝐼𝑅

𝐼𝐵
− 𝑌𝑅

𝑌𝐵
| + | 𝐼𝐺

𝐼𝐵
− 𝑌𝐺

𝑌𝐵
|)2, (12)

where 𝐼𝑅
𝐼𝐺

denotes the pixel-wise ratio between 𝑅 channel and 𝐺
channel of input image 𝐼 , 𝑌𝑅

𝑌𝐺
denotes the pixel-wise ratio between
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𝑅 channel and 𝐺 channel of enhanced one 𝑌 , and
∑

denotes the
summation of all the ratios. 𝐿𝑐𝑟𝑙 constrains the intrinsic ratio among
channels of the input images and thereby avoiding color casts.
Agent reward. The total learning objective is

𝐿𝑡𝑜𝑡𝑎𝑙 =𝑊𝑠𝑝𝑎𝐿𝑠𝑝𝑎 +𝑊𝑒𝑥𝑝𝐿𝑒𝑥𝑝 +𝑊𝑡𝑣𝐴𝐿𝑡𝑣𝐴 +𝑊𝑐𝑟𝑙𝐿𝑐𝑟𝑙 , (13)

where𝑊𝑠𝑝𝑎 ,𝑊𝑒𝑥𝑝 ,𝑊𝑡𝑣𝐴 and𝑊𝑐𝑟𝑙 are tunable parameters which
can be set according to user preference. Hence, for a given enhanced
image, the reward 𝑟 at a certain state 𝑠𝑡 is

𝑟 (𝑠𝑡 ,A𝑡 ) = −𝐿𝑡𝑜𝑡𝑎𝑙 (𝑠𝑡+1). (14)

4.3 Channel Dependent Momentum Update
We further propose a channel dependentmomentumupdate (CDMU)
for color images with RGB channels. At each state, the agent outputs
A𝑅 (x),A𝐺 (x),A𝐵 (x) for the pixel in different channels respectively.
The real parameter mapsA∗

𝑅
(x),A∗

𝐺
(x), andA∗

𝐵
(x) applied to each

channel is computed as:

A∗
𝑅 (x) = A𝑅 (x),

A∗
𝐺 (x) = 𝜔𝐶𝐷A𝐺 (x) + (1 − 𝜔𝐶𝐷 )A𝑅 (x),

A∗
𝐵 (x) = 𝜔𝐶𝐷A𝐵 (x) + (1 − 𝜔𝐶𝐷 )A𝑅 (x) .

(15)

where 𝜔𝐶𝐷 is a tunable parameter which controls the dependence
among channels. It is reasonable to perform CDMU among different
channels, since in natural images the RGB channels are usually
related to each other. Such update avoids aggressive modifications
on an individual channel which may result in unbalanced tone
performance. Note that any a single channel can be used as the
reference channel, i.e., A𝑅 . The ablation study in Section 5.2 reveals
that a totally independent update leads to tone failure and unstable
training.

4.4 Enlightening-guided Recursive Refinement
For low-light images, the degeneration model can be hybrid in prac-
tice. For instance, the image noise in shadows may become more
pronounced after operations of brightness bossting. However, rare
existing methods consider explicit denoising during enlightening
process. To this end, this work introduces an optional denoising
block to perform enlightening-guided recursive refinement (RF).
In general, many existing denoisers can be good candidates for
the denoising block. In light of the competitive performance of
pretrained FFDNet [27], we adopt FFDNet as the denoiser block, as
well as an additional noise level map as a guidance to handle the
spatially variant noise. Here the noise level map refers to the ratio
that each pixel enlightened, inspired by the empirical evidence the
noise level map can indicate the degree of involved noise [32].

We note that the denoising blocks are totally optional in our
framework, as they are not involved in the training process. Our
agent learns the policy in a “denoising-free” setting, and users can
use FFDNet to denoise the enhanced images optionally at each
step of the testing phase. Such regime not only makes training
more stable, but also allows a larger flexibility of using other de-
noisers [5, 7, 15] in testing phase. Moreover, compared with the
supervised one-one image translation methods, our method allows
to address various types of degeneration rather than the noise by
simply employing the restoration methods accordingly.

Table 1: Quantitative results on LOL dataset [24]. +FFDNet
denotes employing an external FFDNet [27] denoiser for
post-processing the enhanced results.

Methods Metrics
LPIPS ↓ SSIM ↑ PSNR ↑

Supervised Retinex-Net [24] 0.4739 0.5336 16.77
KinD [30] 0.1593 0.8784 20.38

EnlightenGAN [6] 0.3661 0.6601 17.02
EnlightenGAN+FFDNet 0.2219 0.8130 17.63

Unsupervised Zero-DCE [6] 0.3352 0.6632 14.86
Zero-DCE+FFDNet 0.2179 0.7674 15.03
ReLLIE+FFDNet 0.1974 0.8268 19.52

LIME [8] 0.3724 0.6216 14.02
LIME+FFDNet 0.2819 0.7419 14.20

Zero-shot Kar et al.[11] 1 - 0.6950 17.50
ReLLIE 0.3976 0.6413 18.37

ReLLIE+FFDNet (ZS) 0.2618 0.7733 18.99

5 EXPERIMENTS AND RESULTS
In this section, we show how the proposed method ReLLIE achieves
a more customized LLIE in real-world scenarios and thereby boosts
the LLIE performance.

5.1 Experiments Setting
Datasets and baselines.We conduct experiments on two types of
LLIE datasets, the standard dataset with paired data (LOL [24]), and
the datasets without ground truth images (LIME [8], NPE [23], and
DICM [13]). We compare our methods against several state-of-the-
art LLIE baselines. The baselines can be classified into three cate-
gories, the supervised methods (Retinex-Net [24] and KinD [30]),
the unsupervised methods (EnlightenGAN [10] and Zero-DCE [6]),
and the zero-shot methods (LIME [8] and Kar et al.[11]). All the
baselines are implemented using the publicly available codes as
well as recommended parameters.

We note that the definition of “zero-shot” in this paper is different
from the conventional “zero-shot learning” which often refers to
using the learned models to handle images of unseen categories.
In this paper, the “zero-shot” setting indicates the model can only
observe a single image in training process. This setting is very
challenging, since most of the learning-based models have much
more parameters which require sufficient data in training.
Implementation details. We implement the proposed method
using PyTorch framework [20]. We implement two versions of ReL-
LIE for both unsupervised and zero-shot settings. For unsupervised
learning with sufficient training data, we adopt a seven-layer neural
network as the policy agent. For zero-shot learning, we adopt a
four-layer neural network as the policy agent. Except the number of
layers, all the hyperparameters are identical for both of them. The
coefficients in the loss is set as𝑊𝑠𝑝𝑎 = 1,𝑊𝑒𝑥𝑝 = 100,𝑊𝑐𝑟𝑙 = 20,
and𝑊𝑡𝑣𝐴 = 200. In CDMU,𝜔𝐶𝐷 = 0.2 is set as the default. For agent
learning, the discount factor 𝛾 is 0.95, the learning rate is 0.001, and
the number of training iterations is 20,000 and 1,000 for unsuper-
vised and zero-shot setting, respectively. All the experiments are
conducted on a GTX 1080Ti GPU.
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Figure 4: Examples of enhancement results on LOL evaluation dataset. For each two rows: Input image, LIME [8],
RetinexNet [24], EnlightenGAN [10], Zero-DCE [6], KinD [30], ReLLIE (ours), ground truth. Zoom in to better see the details.

5.2 Quantitative Comparison
For quantitative comparison with existing methods, we employ
three metrics including Peak Signal-to-Noise Ratio (PSNR, dB),
Structural Similarity (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) [28]. Table 1 summarizes the performances of
ReLLIE and baselines on the test images of LOL dataset. Guided by
the paired data (i.e., supervised learning), KinD [30] achieves the

1Since the authors [11] have not released the code, we only report the SSIM and PSNR
referring to their paper.

best performance. Except KinD [30], our ReLLIE outperforms all
the other baselines under both unsupervised and zero-shot settings.
It demonstrates the efficacy of DRL for LLIE tasks.

In Fig. 5, we show the results of zero-shot LLIE. The upper row
shows that ReLLIE preserves more contextual information with a
better contrast. The lower row shows that ReLLIE avoids artifacts
which exist in all the other baselines. More details are zoomed in
with red boxes for further comparison.
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(a) Input (b) LIME (c) EnlightenGAN (d) Zero-DCE (e) Ours

Figure 5: Examples of enhancement results on LIME evaluation dataset. We show the estimated results of (b) LIME [8], (c)
EnlightenGAN [10], (d) Zero-DCE [6], and (e) Our ReLLIE.

5.3 Visual Quality Comparison
Figs. 4 and 5 compare subjective visual quality on low-light images.
Fig. 4 shows the unsupervised LLIE setting that the ground truth is
available. The enhanced images provided by our ReLLIE is more
visually pleasing without obvious noise and color casts. Moreover,
the results of ReLLIE are more sharp with more details remained
and therefore preserving more visual information. It should be
noticed that we adopt 𝑁 = 6 for all the images, even though 𝑁 can
be changed according to users’ preference for better performance
(see Fig. 8). Results on the third sample reveal that for some very
dark low-light images, 𝑁 = 6 may result in under-enhancement.
However, ReLLIE can still enhance the image with a relatively good
contrast and yields visually pleasure results.

5.4 Visualization of Customized LLIE
The favorite illumination strengths of different persons may be
pretty diverse. Therefore, a practical approach needs to consider the
user-orientated goals by providing various enhancement options.
Fig. 8 shows the customized enhanced images provided by the
proposed ReLLIE in zero-shot scenarios and Fig. 6 demonstrates the
different SSIM and PNSR achieved with different 𝑁 . Given a single
low-light image, we train a randomly initialized agent with a fixed
amount of steps, i.e., 𝑁 = 8, for 1,000 iterations until it converges.
ReLLIE is customized, because: 1) Even though the policy network
is trained with 𝑁 = 8, in testing phase the images can be enhanced
for arbitrary steps; 2) Although no refinement module is involved
in training, it can be employed at arbitrary steps to improve the
testing performance, as shown in Fig. 7. In one word, our ReLLIE
provides more candidate enhanced images to users. Therefore, it is
more customized and suitable for real-world applications.
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Figure 6: Quantitative performance of ReLLIE on LOL eval-
uation set with different number of enhancement steps 𝑁 .

w/o RF w  RF

Figure 7: Enhancement examples ofReLLIE (zero-shot)with-
out and with RF, respectively.
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N = 4 N = 5 N = 6 N = 7Input image

Figure 8: Examples of customized LLIE with different enhancement steps.

1 2 3 4 5 6 7 8 9 10
Image ID in LIME

0
2
4
6
8

10
12
14
16
18
20
22
24
26

N
um

be
r 

of
 u

se
rs

Zero-DCE EnlightenGAN ReLLIE_N=4 ReLLIE_N=6

Figure 9: User study results on LIME [8] evaluation set.

5.5 User Study
To investigate the subjective assessment of LLIE approaches, we
further conduct a user study on the LIME testing dataset with 10
images. A total of 23 users, who cover various ages, genders, and
occupations, are invited to select their favorite images from the
enhancement results provided by Zero-DCE [6], EnglightenGAN
[10], and our ReLLIE (with enhancement steps 𝑁 = 4 and 𝑁 = 6)
on their own devices. Fig. 9 summarizes the user study results, and
it demonstrates that ReLLIE can better meet users’ preference for
most of the images.

5.6 Ablation Study
To study the effectiveness of proposed components in ReLLIE, in-
cluding CRL, CDMU, and RF, we further perform ablation studies
on unsupervised LLIE and summarize the results in Table 2. We
observe that by adding the components progressively, the model
performance is significantly improved from 7.76 dB to 19.52 dB
in PSNR. More specifically, compared with the baseline without
all the components, CRL can alleviate the color casts and accom-
panied with CDMU this issue can be handled well. It can also be
observed that RF can boost the visual quality by removing the noise.
Fig. 10 shows a qualitative example to reveal how each component
influences the outputs.

(a) Input (b) Baseline (c) +CRL

(d) +CRL, CDMU (e) +CRL, CDMU, RF (f) Ground truth

Figure 10: The effect of components in ReLLIE. (b) is the
baseline without using all the components.

Table 2: Ablation study on the components of ReLLIE.

CRL CDMU RF ReLLIE
LPIPS ↓ SSIM ↑ PSNR ↑
0.6746 0.3798 7.76

✓ 0.4824 0.6653 15.40
✓ ✓ 0.3450 0.6730 18.74
✓ ✓ ✓ 0.1974 0.8268 19.52

6 CONCLUSION
In this paper, we have proposed a non-reference DRL based frame-
work, ReLLIE, for efficient, robust, and customized low-light image
enhancement. By learning a stochastic image translation policy
instead of a one-one translation model, ReLLIE provides diverse
image enhancement candidates to meet different individuals’ pref-
erence. In addition, we have proposed a series of learning modules
including CRL, CDMU and RF to enhance the robustness of LLIE
methods. Extensive qualitative and quantitative experiments and
user study have validated the superiority of ReLLIE against existing
methods on unsupervised/zero-shot LLIE scenarios.
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