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ABSTRACT
As attribute leaning brings mid-level semantic properties for ob-
jects, it can benefit many traditional learning problems in multi-
media and computer vision communities. When facing the huge
number of attributes, it is extremely challenging to automatically
design a generalizable neural network for other attribute learning
tasks. Even for a specific attribute domain, the exploration of the
neural network architecture is always optimized by a combination
of heuristics and grid search, from which there is a large space
of possible choices to be searched. In this paper, Generalizable At-
tribute Learning Model (GALM) is proposed to automatically de-
sign the neural networks for generalizable attribute learning. The
main novelty ofGALM is that it fully exploits theMulti-Task Learn-
ing and Reinforcement Learning to speed up the search procedure.
With the help of parameter sharing, GALM is able to transfer the
pre-searched architecture to different attribute domains. In experi-
ments, we comprehensively evaluateGALM on 251 attributes from
three domains: animals, objects, and scenes. Extensive experimen-
tal results demonstrate that GALM significantly outperforms the
state-of-the-art attribute learning approaches and previous neural
architecture search methods on two generalizable attribute learn-
ing scenarios.
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1 INTRODUCTION
Attributes are nameable properties of objects, which are observ-
able from visual images. As it possesses versatile properties, at-
tribute learning serves as the basic building blocks for object clas-
sification and detection [17, 19, 38] as well as instance description
and recognition [28, 29, 37]. Generally speaking, attribute learning
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Figure 1: The goal of GALM is to automatically design a gen-
eralizable attribute learning method. It can automatically
mime the attribute correlation and design the neural net-
works. Once it coverages on a specific attribute domain, the
pre-search neural network architectures could be further
transferred to other attribute domains.

can benefit many traditional learning problems (e.g., object recog-
nition [17], face verification [12] and zero-shot classification [31]).
Moreover, since attributes provide a natural human-computer in-
teraction channel, attribute learning is also explored for fashion
recognition [35, 42] and image retrieval [7–9, 16, 40].

Existing attribute learning methods mainly focus on utilizing
the correlation among attributes to improve the performance of
attribute prediction. The relationships between attributes and cat-
egories are explored tomodel the correlation in [1, 11, 20, 22].With
the success of deep learning, more and more multi-task attribute
learning methods [12, 13, 25] are proposed to model the correla-
tion with a tree-like neural architecture. More recently, a few re-
searchworks begin to use the correlation among different attribute
domains to improve the accuracy of attribute recognition in each
single domain [11, 26, 36].

Although these methods achieve good performance, there are
three obvious limitations: 1) The correlation among attributes is
manually defined. Due to the limitation of human cognition, there
are a lot of irrational correlations. 2) The generalization of attribute
learning is ignored. Even for the same attribute learning tasks, ex-
isting well-designed neural networks cannot be used to generalize
for other attribute domains. 3) The neural architectures of existing
attribute learning models are designed by human experts, which
require a wealth of experiences and skills. It has huge potential to
be improved.

To address these issues, Generalizable Attribute Learning Model
(GALM) is innovatively proposed in this paper. For easy under-
standing, a blueprint of GALM is illustrated in Fig. 1. Given a spe-
cific attribute domain,GALM first imitates the behaviors of human
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experts to analyze the attribute correlation and keep exploring dif-
ferent network configurations to design the neural network archi-
tectures. When GALM is converged after a huge number of explo-
ration, the optimized attribute correlation and the neural network
architecture are obtained. Since the pre-trained GALM has learned
a prior knowledge of the design strategy for the neural network,
in addition to the automatically designing the neural network ar-
chitecture for a single attribute domain, it can be used to address
the attribute learning tasks for other attribute domains.

In general, the contributions of this paper are summarized as:

• Generalization: To the best of our knowledge, this is the first
work to design the neural networks for the generalizable attribute
learning task. Different from previous attribute learningmethod,
our approach can simultaneously mine the correlation among
attributes and design neural network architectures in an auto-
mated way. Moreover, once it converges on a specific attribute
domain, the pre-searched neural architectures can be transferred
to other domains to support other attribute learning tasks.
• Efficiency: Compared with previous neural architecture search
methods, Multi-Task Learning is first integrated into Reinforce-
ment Learning to significantly boost the efficiency by searching
the neural network architectures of multiple attributes at the
same time. As far as we know, this is the first method that can
search neural network architectures on 251 attributes in a single
Nvidia Titan XP GPU.
• Experiments: Extensive experiments demonstrate that GALM
substantially outperforms the human-designed state-of-the-art
attitude learning approaches on two general attribute learning
scenarios. Since attribute learning can benefit other object de-
tection and recognition tasks, our method has huge potential
applications and commercial values.

The rest of this paper is organized as follows: The related work
is first introduced in Section 2. The proposed GLAM is described
in Section 3. The experiments are presented in Section 4. Finally,
we conclude the paper in the last section.

2 RELATEDWORK
Our work is related to Attribute Learning and Neural Architecture
Search, which are briefly reviewed in this section.

2.1 Attribute Learning
Attribute learning could benefit many traditional learning tasks.
In general, previous works mainly focus on modeling the correla-
tion among attributes. Specifically, the relationships between at-
tributes and categories are utilized to model the correlation for
cross-category generalization [1, 11–13, 20, 22, 25]. A hyper-graph
is deployed in [15] to explore the correlation among attributes for
cross-category attribute prediction. A unified multiplicative frame-
work is presented in [22], in which images and category informa-
tion are jointly projected into a shared feature space for attribute
prediction. Moreover, a huge number of zero-shot learning meth-
ods are proposed to use the attribute learning for image classifica-
tion [6, 32, 41].

Recently, more and more deep neural networks have achieved
great success in attribute learning [12, 13, 25]. A multi-task at-
tribute learningmethod is proposed in [12], inwhich several group-
shared loss-functions are applied on amanually designed tree struc-
ture to model the correlation. Meanwhile, a fully adaptive search-
ing method is presented in [25] to automatically search a tree-
structured neural network architecture instead of the efforts of
human experts. In general, these works only investigate mining
attribute information from the same domain, which are regarded
as Semantic Attribute Learning.

More recently, a few works consider the knowledge transfer-
ring among different domains [11, 26, 36]. A novel CNN archi-
tecture is proposed in [36], in which a domain confusion loss is
employed to learn a domain invariant representation for attribute
prediction. An attention-guided transfer architecture is proposed
in [26], where the coefficients of attention weights are utilized to
deploy the cross-domain generalization. Following the convention
of [26], they are treated as Non-Semantic Attribute Learning.

Although these methods have recognized the importance of ex-
ploiting the correlation and improving the generalization, they are
unable to solve the generalizable attribute learning task. Different
from existing attribute learning methods, our work aims to com-
pletely replace the human experts to analyze the attribute correla-
tion and automatically design the neural networks for the general-
izable attribute learning.

2.2 Neural Architecture Search
There is a growing amount of research works focusing on the neu-
ral architecture search to automatically design the neural network.
A variety of approaches is proposed in previous works, including
random search [3], Bayesian optimization [18, 34], evolutionary al-
gorithm [31] and reinforcement learning [43, 44]. In general, one
major challenge in neural architecture search is its huge comput-
ing cost. For instance, 800 GPUs are used to discover the convo-
lutional architecture on the Cifar-10 dataset, which takes 28 days
[43]. To address this problem, various approaches are proposed to
accelerate search procedure from different perspectives, including
performance prediction [2], iterative search method [23], hierar-
chical representation [24], hyper-networks [4], parameter sharing
[30] and transfer leaning [5].

Although existing neural architecture searchmethods have been
successfully deployed to design neural networks, they still need
extensive sampling, constructing and training operations. On the
other hand, there is a huge number of attributes for the generaliz-
able attribute learning.When existing methods are directly used to
search neural architecture for each attribute, there are countless at-
tempts to obtain a generalizable neural network. Therefore, these
methods are obviously incompetent to handle the generalizable at-
tribute learning.

3 OUR APPROACH
In this section, wewill elaborate the proposedGeneralized Attribute
Learning Model (GALM). The problem formulation is first intro-
duced in Section 3.1. The framework and each component ofGALM
will be described in Sections 3.2-3.4. Finally, the training algorithm
and the generalization scheme are illustrated in Section 3.5.
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Table 1: The search space of GALM.
Shared Skip-Connection Kernel Channel
Conv-1 — 7*7 16
Conv-2 — 3*3 32
Conv-3 — 3*3 64
Search Skip-Connection Kernel Channel
Conv-4 Conv-{1,2}-Conv-4 {3*3,5*5} 32
Conv-5 Conv-{1,2,3}-Conv-5 {3*3,5*5} 16
Fc-1 — — {64,128.256}
Fc-2 — — {64,128.256}
Fc-3 Fc-{1,2}-Fc-3 — 2

3.1 Problem Formulation
In contrast to conventional attribute learningmethods, whichman-
ually design the neural networks for a specific domain of attributes,
we proposeGeneralizable Attribute Learning Model (GALM), which
tries to automatically design the neural networks for attributes
learning tasks.We have carefully reviewed the deep attribute learn-
ingmethods in previous literatures.Without loss of generality, these
methods are based on a tree-like structure to model the correlation
among attributes, where the root node of the tree is shared for all
attributes and the leaf nodes are designed for individual attributes.
Inspired by these works, the goal of GALM is to automatically de-
sign a tree-like neural network architecture having the optimal
learning performance.

By comprehensive consideration of parameter numbers, train-
ing efficiency and evaluation performance, the search space ofGALM
is described in Table 1, where the first three convolutional layers
are shared for all attributes, while the last two convolutional and
three fully connected layers are designed for each attribute. For
each attribute, two sets of choices are considered: 1) Which pre-
vious layers are connected to, and 2) What configuration is to be
used? Specifically, for the skip connection, two types of connec-
tions are considered. One is for Conv-4 and Conv-5, which is simi-
lar to [14]. Another one is for Fc-3, which determines if Fc-2 is used.
For the configuration, we only search the kernel sizes of Conv-4,
Conv-5 and the dimensions of Fc-1 and Fc-2. The Fc-3 layer is fixed
for each attribute. After each convolutional layer, a ReLU layer, a
max-pooling layer with a kernel size of 2*2 and a stride of 2, and
a Batch Normalization (BN) layer are adopted. It is noted that BNs
are fixed in the inference phase.

Since all choices are independent, there are 2 ∗ 2 ∗ 3 ∗ 3 = 36
configurations and 4∗8∗2 = 64 skip connections. For N attributes,
if we directly optimize on entire attribute domains as [43, 44], the
number of possible networks will be extremely increased to {36 ∗
64}N = 2304N . Facing the huge scope of network search space, it
is challenging to obtain an optimal neural architecture. Therefore,
Multi-Task Learning is used to speed up the search. Specifically,
we treat attributes as different tasks to reduce the search space.
Finally, with the help of Multi-Task Learning, the search space is
reduced to 36 ∗ 64 ∗ N = 2304 ∗ N . Noted that, it is still difficult to
search for such search space. Inspired by previous works [30, 44],
Reinforcement Learning is used to further speed up the searching.

Specifically, the searching process of GALM is treated as a se-
quential decision process, which is formulated as a tuple< S,A,φ,R >:
• S = {s1, s2, .., sT } is the state set, which corresponds to neural
network architectures at different timestamps, where T is the
number of timestamps.

Neural	Architecture	Action	𝑎"

Reward	Feedback	𝑟"
Next	State	s%&'

Stripe GALM

…… 𝑠" 𝑠"&)𝑠"&' 𝑠"&*
𝑎" 𝑎"&)𝑎"&' 𝑎"&*

𝑟" 𝑟"&)𝑟"&'

Figure 2: The sequential decision process of GALM.
• A = {a1,a2, ...,aT } is the action set, in which each action is a
choice of neural network architecture settings.
• φ is the policy function with parameter θ , which is used to gen-
erate the corresponding neural architecture action at based on
the current neural network architecture st as φθ (st ) = at . With-
out confusion, we also treat θ as the parameter of GALM in this
paper.
• R = {r1, r2, ..., rT } is the reward set. At each timestamp t , the re-
ward rt is calculated to evaluate the performance of the current
neural network architecture. Specifically, in our implementation,
the validation accuracy of current mini-batch data is used as the
reward.
During the training phase,GALM keeps imitating the behaviors

of human experts to construct the corresponding neural network
architectures. As Fig. 2 shows, at timestamp t , a neural network
is constructed by an action at , and some measurements (such as
accuracy) are provided as the reward rt to verify the action at . At
the same time, a state st+1 is estimated to model the state of the
neural network. After countless attempts, an optimized neural net-
work architecture is derived once GALM is converged. In addition
to automatically designing the neural model for a given attribute
learning task, the learned GALM can be further used to address at-
tribute learning problems in other domains, since it has learned a
prior knowledge of generalizable neural architectures and training
strategies.

3.2 Framework
To demonstrate our contribution and innovation, the framework
of previous neural architecture search method is first briefly de-
scribed, followed by the framework of the proposed GALM.

3.2.1 Framework of previous neural architecture searchmethods.
The framework of previous neural architecture search methods
[43, 44] is illustrated in Fig. 2, in which RNN network is used to au-
tomatically design the neural network architecture and maximize
the expected performance. At each timestamp, RNN network in-
teractively samples a sequence of actions. Here, every action is an
architecture design choice, such as heights, widths and strides of
CNN filters.With these actions, different child neural networks are
then constructed and trained until convergence. To train RNN net-
work, the performance of each child neural network is served as a
reward. The RNN network is then optimized by the policy gradi-
ent algorithm. Specifically, with the optimization of RNN network,
the probability of the neural network actions having better perfor-
mance is improved in the training phase. Once RNN network con-
verges, an optimized probability distribution over the search space
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Figure 3: The framework of GALM. (1) The attribute correlation is maintained and updated by ARM to learn differentiated
attribute embeddings over time. (2) At each iteration of themultitask training, an attribute is randomly sampled. The attribute
embedding (i.e., the output of ARM) is passed to MNAS along with the selected neural architecture action embedding. The
output of GALM is a series of neural architecture actions, such as heights, widths and strides of CNN filler, which are used to
design the neural network architecture for different attribute learning tasks.
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Figure 4: The previous neural architecture search frame-
work, which is used to compare with GALM.

is learned. Finally, this probability distribution is used to obtain the
optimized neural network architectures.

Although previous neural architecture search framework is suc-
cessfully applied to design neural networks for image classification
[43, 44], it still needs extensive sampling, constructing and train-
ing operations. Since we have to face a huge number of attributes
among different domains, this framework is obviously unable to
solve the generalizable attribute learning.

3.2.2 Framework of GALM. Compared with previous frame-
works,Generalizable Attribute Learning Model (GALM) is proposed
to efficiently discover the optimal neural networks for attributes
learning tasks. The framework of GLAM is illustrated in Fig. 3. Two
innovative components, Attribute Representation Model (ARM) and
Multitask Neural Architecture Search (MNAS) are presented as fol-
lows:

• Attribute Representation Model (ARM) is proposed to learn
the correlations of attributes, in which the correlations are main-
tained and updated with the neural network architecture search.
Our method is modeled as a conditional framework with ARM,
in which the actions are generated according to the embeddings
of attributes, so that the model could simultaneously conduct
neural architecture search on multiple attributes. Meanwhile, It
helps to understand the correlation among attributes, so that
the neural architecture of similar attributes could be efficiently
transferred, which significantly speeds up the search procedure.

• Multitask Neural Architecture Search (MNAS): Similar to
the framework of previous neural architecture search, MNAS is
also implemented with RNN network. Since attributes are com-
monly associated, multi-task learning is employed to obtain po-
tential improvement by utilizing “correlation” among neural net-
work architectures. In addition, with the help of sharing the pa-
rameters among MNAS, the pre-searched neural network archi-
tectures are efficiently transferred to other domains.
ARM is along with MNAS for complete search phase. At each

timestamp, an attribute and its corresponding training examples
are randomly sampled. ARM is employed to embed the attribute
and the neural network design actions from previous timestamp.
After that, embeddings are fed into MNAS for the neural archi-
tecture search. When these two models are converged, the opti-
mal correlation and network architecture are obtained. Moreover,
with sharing parameters, GALM can further transform the pre-
optimized neural network architecture from source domains to any
target domains.

In general, the main novelty of GALM lies in the simultaneous
search neural network architecture over multiple attributes. Due
to the correlations among attributes, different attributes may re-
quire similar neural network architecture. With the help of ARM,
we can easily transfer the pre-searched neural network architec-
tures to similar attributes. On the other hand, with the parameters
sharing betweenARM andMNAS, the pre-searched attribute learn-
ing networks could be efficiently transferred to different domains.

3.3 Attribute Representation Model
Attribute Representation Model (ARM) is proposed to embed the
attributes. Specifically, given the attribute set E = {e1, e2, ..., eN },
where ei denotes an embedding of an attribute, which is randomly
initialized. N is the number of attributes. A fully connected layer
is used to embed ei as:

êi =Wθ ei (1)

whereWθ is the parameters of the fully connected layer. OnceARM
converges, we extract embeddings from ARM as the attribute rep-
resentation êi , and cosine distance is then calculated to obtain the
correlation among attributes.
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Different frompreviousworks [12, 13], inwhich the correlations
among attributes are manually defined, the correlation of ARM is
maintained and updated with MNAS. During the training, ARM
can automatically optimize the correlation to remedy the uncer-
tainty, since ARM is a fully connected layer in essence, which is eas-
ier to be maintained and updated along with neural model search.
When the optimal neural network architectures are obtained, the
correlation among these attributes is refined at the same time.

Moreover, with the help of ARM model, our method is mod-
eled as a conditional framework, in which the neural architecture
actions are generated based on the embeddings of attributes. Us-
ing this conditional framework, GALM can use the Multi-Tasking
Learning to search neural architectures for multiple attributes at
the same time. Since similar attributes may require the approx-
imately same neural network design [12, 13], GALM can easily
transfer the pre-searched neural architectures to similar attributes.
Compare with previous neural architecture search methods, ARM
can significantly improve the efficiency of the neural architecture
search.

3.4 Multitask Neural Architecture Search
Comparedwith previousworks,Multitask Neural Architecture Search
(MNAS) explores two novel aspects: 1) Instead of discovering the
optimized neural network architecture for all attributes, it gradu-
ally optimizes the sub-neural networks for each attribute. It sig-
nificantly reduces the search space and eliminates the negative
impacts by assigning each attribute into each individual dynamic
environment. 2) With the help of ARM, it is able to transfer the
pre-searched neural network architectures to similar attributes in
the search process. This means MNAS can use the “correlation” of
neural networks to significantly improve the performance and ef-
fectively speed up the neural architecture search by obtaining a
better initialization with the pre-search similar attributes.

As shown in Fig. 3, MNAS is synchronously trained on a set of
N attributes. We uniformly sample an attribute at the beginning
of each RNN training iteration. ARM is then used to represent the
attribute to a unique embedding vector. Noted that, these attribute
embeddings can extend MNAS into a condition model, in which
the neural architecture action is generated based on these attribute
embeddings. With this conditional framework,MNAS can simulta-
neously search differentiated architectures for multiple attributes.

Mathematically, MNAS predicts a list of actions a1:T to design
the neural network architecture for all attributes. Once it converges,
the designed neural network will achieve the reward set R on the
validation dataset. We can use it as the reward signal and use Re-
inforcement Learning to train MNAS. To find the optimal architec-
ture, we maximize its expected reward, represented as J (θ ):

J (θ ) = EP (a1:T ;θ )[R] (2)

Since the reward signal R is non-differentiable, a policy gradient
method is used to iteratively update θ . In this work, the REIN-
FORCE rule from [39] is adopted:

▽θ J (θ ) =
T∑
t=1

EP (a1:T ;θ )
[
▽θ log P (at |a (t−1):1; θ )R

]
(3)

An empirical approximation of the above quantity is:

1
M

M∑
k=1

T∑
t=1
▽θ log P (at |a (t−1):1; θ )rk (4)

where M is the number of different architectures that RNN net-
work samples in one batch. T is the number of timestamps. rk is
the validation accuracy that the k-th neural network architecture
achieves after training.

Noted that, the aforementioned update is an unbiased estima-
tion for the gradient, but has a very high variance. To reduce the
variance of this estimation, a baseline function is employed:

1
M

M∑
k=1

T∑
t=1
▽θ log P (at |a (t−1):1; θ )(rk − b ) (5)

where the baseline function b does not depend on current action,
which is still an unbiased gradient estimation. In this work, b is an
exponential moving average of previous architecture accuracies.
In addition, we follow similar parameter sharing scheme as [30] to
speed up the search for each attribute. The reward set R is used to
select models that generalize well rather than models that overfit
on the training set, which is computed on the validation set instead
of on the training set.

3.5 Training & Generalization
3.5.1 Training algorithm. There are two sets of parameters in

GALM. 1) The parameters of ARM andMNAS are denoted as θ and
Wθ , respectively, 2) The parameters of attribute learning neural
networks are denoted by Ω.

In general, the training procedure of GALM consists of two in-
terleaved phases. The first phase trains the parameters of attribute
learning networks (i.e., Ω) on the training dataset. The binary cross
entropy loss with the Sigmod activation function is used as our
loss function. The second phase trains the parameters of ARM and
MNAS (i.e., θ and Wθ ) for a fixed number of timestamps. Typi-
cally the number of timestamps is set to 2000 in our experiments.
These two phases are alternatively performed during the training
of GALM.

More details are listed in Algorithm 1, in whichARM andMNAS
are jointly trained. For a newunseen attribute, we copy correspond-
ing ARM from the most correlated pre-searched attribute to initial-
ize ARM. The most correlated attribute is obtained by calculating
the cosine distance among the attribute embeddings. Based on this
way, our method could transfer the pre-search attribute correla-
tions and neural networks among similar attributes.

3.5.2 Generalization scheme. As can be seen from the right part
of Fig. 3, the parameters of ARM andMNAS are shared. Therefore,
it is straightforward to perform a transfer from the pre-searched
domain to other domains. For example, given a new attribute,ARM
is used to generate the corresponding embeddings. By comparing
the cosine distance among embeddings of pre-trained attributes,
the most correlated attribute is selected. The neural architecture of
the selected attribute is then utilized to initiate the new attribute. In
the generalization phase, the neural architecture search is only con-
ducted on the new attribute. Since ARM andMNAS have learned a
generic architecture design from the selected attributes, the search
procedure of the new attribute will significantly speed up.
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Algorithm 1 The training algorithm of GALM.
1: Input: Training data D , learning rate β .
2: for each episode l = 1, 2, ..., L do
3: Shuffle to get the mini-batches sequence D = {D1, D2, ..., DT }.
4: for t = 1, ..., T do
5: ▷ % Sampling Phase %
6: Uniformly sample an attribute as a task.
7: if the sampled attribute is an un-seen attribute then
8: InitializeARM with the most correlated pre-searched attribute

via cosine distance among the embeddings from ARM.
9: end if
10: Sample neural architecture action at .
11: ▷ % Constructing Phase %
12: Construct neural networks by the neural architecture action at .
13: Train the constructed neural networks Ω on the training dataset

until it converges.
14: Receive reward rt on the validation data and calculate the expo-

nential moving average b .
15: ▷ % Updating Phase %
16: Update MNAS policy θ = θ + β (rt − b )

∂loдPθc (at |at−1:1 ;θ )
∂θ

17: Retain the gradient of MNAS and updateWθ of ARM.
18: end for
19: end for
20: Output: MNAS policy pθ (a1:T ), ARM parameterWθ .

4 EXPERIMENTS
4.1 Implementation Details
In this subsection, the implementation details of ARM and MNAS
are introduced. ARM and MNAS are implemented as a fully con-
nected layer with 50 hidden, and a 2-layer LSTM with 100 hid-
den units, respectively. The weights of MNAS and the embedding
model are uniformly initialized at random, yielding an approxi-
mately uniform distribution over actions. The learning rate is set
to 10−4. It is noted that MNAS is optimized at each timestamp, i.e.
the batch size is set as 1. ARM and MNAS are jointly trained by
REINFORCE [39]. When ARM and MNAS converge, we fine-tune
the selected neural network on both of the training set and the
validation set, and then report its performance on the testing set.

4.2 Experiment Settings
4.2.1 Evaluation Tasks. We evaluate our method on two gener-

alized attribute learning tasks, i.e. Semantic Attribute Learning and
Non-Semantic Attribute Learning.

• Semantic Attribute Learning means that the transfer is de-
ployed on different class categories from the same attribute do-
main, which has been studied in [1, 20, 22].
• Non-Semantic Attribute Learning means the transfer is con-
ducted on disjointed domains, in which the attribute sets are
from different domains without intersection. The aim of the ex-
periments is to verifywhether the general compatibility ofGALM
can truly improve the performance.

4.2.2 Datasets. In order to be consistent with previous works
[1, 20, 22], three datasets are used in our experiments. For fair com-
parison, the same split way is used.

• AWA [21] contains 30,475 images of 50 animal classes. Each
class is annotated with 85 attributes. Following [1, 20], we di-
vide the dataset into 40 classes (24,295 images) for training and
10 classes (6,180 images) for testing.
• aPaY [10] consists of 12,695 images from PASCAL VOC 2008
dataset as training set, and 2,644 images collected fromYahoo im-
age search engine as testing set. Both sets have disjointed classes
(i.e., 20 classes for PASCAL and 12 classes for Yahoo). Each class
is annotated with 64 attributes.
• SUN [29] is a subset of SUN Database for fine-grained scene
categorization. Totally, there are 14,340 images from 707 classes,
in which 600 classes are used for training and 107 classes for
testing. Each image is annotated with 102 binary attributes to
describe the material and surface properties.

4.2.3 Baselines. We compare GALM with the following state-
of-the-art attribute learning approaches. Since some baselines are
not deep learning methods, VGG16 [33] is used to extract 4,096-
dimensional CNN features for these methods.
• DAP [20]: It is a method for attribute prediction. Linear SVM is
used to train attribute classifiers separately.
• IAP [20]: It first maps inputs to the seen classes and then pre-
dicts the attributes, which is an indirect method for attribute
prediction.
• ALE [1]: A method for image classification, in which each class
is embedded in the space of attribute vectors. It utilizes the alter-
native information (e.g. class hierarchies) for attribute learning.
• HAP [15]: It uses a hyper-graph to explore the correlation for
attributes learning. Since it has a lot of variations, we use the
kernel alignment version to obtain the best performance.
• UMF [15]: A unifiedmultiplicative framework for attribute learn-
ing, in which images and category information are jointly pro-
jected into a shared feature space for attribute prediction.
• MDG [11]: It gears the techniques in multi-source domain gen-
eralization for the purpose of learning cross-category generaliz-
able attribute detectors.
• FMT [25]: An automatic approach for designing compact multi-
task deep learning architectures, in which a tree-like structure
is learned by a greedy algorithm.
• AMT[13]: A multi-task deep convolutional neural network, in
which an auxiliary network is used to explore the attribute rela-
tionships for improved performance.
• FT [27]: A fine-tuning based method, in which the model is first
trained from the source domain, and then fine-tuned by the tar-
get domain.
• AFS [26]: An attention-guided transfer architecture, in which
the coefficients of attention weights are utilized to deploy the
transfer.

4.2.4 Evaluation metrics. Similar to previous works [1, 20, 22],
the performance of attribute predictors are measured bymean area
under ROC curve (mAUC).

4.3 Semantic Attribute Learning
The performance comparison of semantic attribute learning is listed
in Table 2. The italic results are from our implementation, while
others are reported by the authors. From Table 2, we can find that
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Table 2: The performance comparison of Semantic Attribute
Learning.

AWA [21] aPaY [10] SUN [21]
DAP [20] 72.8 77.4 81.4
IAP [20] 74.1 78.1 81.9
ALE [1] 65.7 69.2 74.5
HAP [15] 74.2 58.2 76.7
UMF [22] 76.7 79.7 80.5
MDG [11] 82.2 82.3 85.8
AMT [13] 85.5 84.5 82.5
FMT [25] 72.2 70.5 75.5
GALM 86.5 84.2 86.5

GALM outperforms all baselines on two datasets, which clearly
validates our assumption that GALM improves the generalization
of attribute detectors for previously unseen categories. For aPaY
dataset, althoughAMTachieves the best performance, our approach
has the competitive performance. The main reason is that the last
two fully connected layers of each attribute are all connected to
other attributes, so that it uses more parameters than our method.

Except for AMT and FMT, we can directly compare our method
with other baselines to evaluate the effectiveness of the generaliza-
tion, because they share the same input. Since IAP learns a map
from attributes to class categories, it has more generalization capa-
bility than DAP, having a better performance. Meanwhile, because
ALE focuses on image classification, it does not perform quite well
on the attribute prediction task. The generalization of HAP is un-
stable since it relies on a hyper-graph, which is sensitive for dif-
ferent datasets. UMF considers the attribute learning and classifi-
cation at the same time, which has some improvement. MDG and
AMT have a better performance than other baselines, from which
the correlations of attributes are utilized in both methods. Simi-
lar to GALM, FMT also optimizes a tree-like structure by using a
greedy method. However, the performance is not satisfactory. The
main reason is that the greedy algorithm is easy to over-fitting.

4.4 Non-Semantic Attribute Transfer
The performance comparison of non-semantic attribute learning is
listed in Table 3. For convenience, AWA, aPaY and SUN datasets are
denoted as 1, 2 and 3, respectively. S and D refer to the source and
target domains, respectively. For example, S1-D2 means that we
generalize the model from AWA to aPaY. The impacts of the same
domain are ignored. The last 3 columns use all attribute domains.
Symbol ∗ indicates the improvement when the source domain is
utilized. As FT and AFS are only used for non-semantic attribute
learning, they do not have the symbol ∗.

From Table 3, we can find that GALM almost outperforms all
baselines on every generalization scenario. The success of GALM is
mainly due to the combination of transfer learning with the neural
network architecture search. Although FT andAFS have better per-
formance in two cases, overall performance is worse. Importantly,
GALM significantly beats other baselines, when the attributes of
the target domain are not used as the source domain, referring to
the first 9 columns. It means GALM can effectively generalize the
pre-search neural network for domains that are semantically unre-
lated to the source domain. On the other hand, other baselines are
quite poor, in which symbol ∗ is very rare in the first 9 columns.
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Figure 5: The correlation of different domains.

This indicates that they are not suitable for the generalizable at-
tribute learning. Furthermore, since the last 3 generalization sce-
narios using more data, i.e, attributes from the target domain, they
outperform other generalization scenarios. This result highlights
the benefit of the correlations among different attribute domains.

4.5 Analysis of ARM
To analyze the effectiveness of ARM, the correlations among differ-
ent attribute domains are illustrated in Fig. 5. We extract embed-
dings from ARM to represent attributes, and then cosine distance
is calculated to obtain the correlations. Due to the large number of
attributes, we group attributes by their domains. Rows represent
target attribute domains and columns refer to source attribute do-
mains. It evaluates ifARM has successfully learned the correlations
and if the correlations are the same as our expectation. In addition,
for a given target domain, we also verify whether the most impact
attributes are from the same domain or disjointed domains.

Fig. 5-a illustrates the correlations among different domains, in
which the impact of the same domain is ignored. Overall, scenes
(SUN) are closely related to animals (AWA), which have relatively
high scores. Objects (aPaY) are almost equally related to animals
(AWA) and scenes (SUN). It is interesting to see that this result
is consistent with our expectation. Scene and animal domains are
very correlatedmainly because animal images always contain scenes.
When the impact of the same domain is considered, as Fig. 5-b
shows, the difference becomes small. Objects, scenes and animals
do benefit from semantically related attributes. The overall within-
domain model similarity is lower than 50%, which proves the value
of generalization for attribute learning.

Some examples of the correlated attributes are illustrated in Ta-
ble 5 to demonstratewhat attributes are transferred across domains.
For animal attributes, “tough-skinned” gives us the feeling of an
“Enclose-area” and “stressful” situation. A “fast” animalsmightmake
people “scary”, and a “hunter” often brings “metal” and “shiny” ob-
jects. For object attributes, “vegetation”, “leaf” and “flower” are usu-
ally associated with a farm scene (i.e., “tree’, “flower”” and “shrub-
bery”), and animals live in the environments (i.e., “plains”, “for-
est” and “jungle”). For scene attributes, “competing” scenes might
contain “glass” and “headlight” objects, and the color of “railroad”
is roughly like “tough-skinned” animals. In general, while corre-
lated attributes are selected from disjointed domains, it is possible
to explain some correlations, and most of them have intuitive ex-
planation. This is indeed what we expected when performing the
non-semantic transfer. Therefore, ARM can effectively mine the
attribute correlations.
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Table 3: The performance comparison of Non-Semantic Attribute Learning.
S1-D2 S1-D3 S2-D1 S2-D3 S3-D1 S3-D2 S1,2-D3 S1,3-D2 S2,3-D1 S1,2,3-D1 S1,2,3-D2 S1,2,3-D3

DAP [20] 78.4* 80.1 71.4 81.2 73.5* 79.2* 80.1 78.1* 72.1 75.2* 83.4* 82.5*
IAP [20] 74.7 83.3* 75.5* 81.4 77.2* 75.3 79.2 74.2 72.4 74.7* 77.5 77.2
ALE [1] 64.2 73.9 64.3 75.2* 62.4 64.4 74.4 63.7 60.1 69.2* 61.2 72.4
HAP [15] 64.2* 72.7 78.5* 74.6 76.4* 64.5* 72.3 65.5 77.4* 82.3* 69.8* 77.3*
UMF [22] 82.3* 83.5* 77.5* 82.2* 78.5* 83.2* 83.5* 84.2* 79.5* 82.5* 85.7* 84.2*
MDG [11] 82.3* 86.9* 84.5* 87.4* 85.1* 84.7* 89.2* 85.3* 83.1* 87.2* 87.2* 91.2*
AMT [13] 87.1* 84.5* 86.2* 83.7* 84.1 87.5* 83.2* 86.2* 87.1* 86.1* 89.2* 83.4*
FMT [25] 72.5* 77.3* 77.7* 76.5* 81.3* 72.4* 77.9* 74.7* 85.3* 87.2* 84.7* 79.5*
FT [27] 85.1 89.4 90.5 89.1 88.7 87.5 91.5 89.4 92.2 91.2 93.2 91.5
AFS [26] 84.7 87.7 87.4 87.9 92.4 84.5 89.5 82.5 92.1 88.3 93.8 91.4
GALM 87.0* 89.9* 90.9* 89.3* 90.2* 87.8* 91.9* 91.2* 90.7* 92.5* 94.5* 93.4*

Table 4: The analysis of the optimal neural network architectures.
Layers AWA 14_AWA aPaY 09_aPaY SUN 14_Sun
Conv-4 Conv-1-Conv-4 (15.3%) Conv-1-Conv-4 (19.4%) Conv-1-Conv-4 (29.4%)

Conv-2-Conv-4 (52.2%) Conv-2-Conv-4 (55.3%) Conv-2-Conv-4 (34.4%)
3*3 (87.1%), 5*5 (12.9%) 3*3 (84.2%), 5*5 (15.8%) 3*3 (82.2%), 5*5 (17.8%)

Conv-5 Conv-1-Conv-5(12.7%) Conv-1-Conv-5 (19.4%) Conv-1-Conv-5 (12.1%)
Conv-2-Conv-5 (21.6%) Conv-2-Conv-5 (28.42%) Conv-2-Conv-5 (45.3%)
Conv-3-Conv-5 (20.4%) Conv-3-Conv-5 (4.7%) Conv-3-Conv-5 (6.4%)
3*3 (93.8%), 5*5 (6.2%) 3*3 (88.4%), 5*5 (11.6%) 3*3 (84.5%), 5*5 (15.5%)

Fc-1 64 (15.2.%), 128 (37.8%), 256 (57.0%) 64 (5.6%), 128 (32.4%), 256 (72.0%) 64 (14.3%), 128 (47.7%), 256 (37.0%)
Fc-2 64 (17.4%), 128 (48.6%), 256 (34.0%) 64 (12.7%), 128 (49.3%), 256 (38.0%) 64 (15.8%), 128 (54.4%), 256 (30.8%)
The values in the parentheses (%) denote the frequency of each design choice.

Table 5: Examples of correlated attributes. Red color is target domain. Values in parentheses are the degree of correlation.
AWA [21] aPaY [10] SUN [29]

Tough-skinned, Fast, Hunter Metal (0.86), Shiny (0.74), Skin (0.54) Enclosed-area (0.68), Scary (0.60), Stressful (0.58)
Plains (0.83), Forest (0.81), Jungle (0.78) Vegetation, Leaf , Flower Trees (0.87), Flowers (0.64), Shrubbery (0.59)
Solitary (0.76), Paws (0.74), Tough-skinned (0.67) Headlight (0.54), Glass (0.48), Mast (0.42) Competing, Medical-activity, Railroad

4.6 Analysis of MNAS
A statistical analysis is conducted on the optimized neural architec-
tures. Due to the large number of attributes, we group attributes
by their domains and analyze the ratios of different network de-
sign options, as listed in Table 4. The values in the parentheses (%)
denote the frequency of each design choice.

In general, some insights can be obtained as follows: 1) The ker-
nel size of 3× 3 is better than 5× 5. 2) Three fully connected layers
are better than two layers. 3) The dimensions of the last fully con-
nected layers should be smaller than previous ones. 4) The skip
connections from the middle layers are more effective. Addition-
ally, compared with aPaY, we find the kernel size of SUN is larger
and more skip connections from Conv-1 are used, which demon-
strates that larger kernel sizes and skip connections from the first
few layers focus more on the background information.

4.7 Efficiency
Conventional Neural Architecture Search is computationally ex-
pensive and time-consuming. 800 GPUs are used in [43] for 28 days
to optimize the neural architectures on CIFAR-10 dataset. On the
contrary, our method can use one GPU to build a generalizable at-
tribute learning model. For instance, with a single Nvidia Titan XP
GPU, our method can search 251 attributes over three attribute do-
mains in 27.6 hours. Compared with previous neural architecture
search methods, the improvement comes mainly from two aspects:
1) The adoption of multitask learning: With the help of ARM, the
architectures of similar attributes are shared. 2) Parameter sharing:

With the parameter sharing ofMNAS, our method can transfer the
pre-searched architecture to other attribute domains.

5 CONCLUSION
In this paper, we explore the problem of generalizable attribute
learning by multitask neural architecture search. Generalizable At-
tribute Learning Model (GALM) is novelly proposed to automati-
cally design the neural networks for attribute learning tasks. By
jointly exploring two components (i.e., ARM and MNAS) on pre-
vious neural architecture search methods, GALM can significantly
accelerate the search efficiency by transferring the distilled knowl-
edge from pre-searched architectures to unseen attributes. More-
over, with sharing parameters, GALM can further be generalized
for other target domains. Experiments on three domains with a
total of 251 attributes demonstrate the effectiveness and efficiency
ofGALM. It significantly outperforms the state-of-the-art attribute
learningmethods, and yields substantially faster convergence speed
than previous neural architecture search methods.
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