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Abstract

Contrastive learning has been widely applied to graph rep-
resentation learning, where the view generators play a vi-
tal role in generating effective contrastive samples. Most of
the existing contrastive learning methods employ pre-defined
view generation methods, e.g., node drop or edge perturba-
tion, which usually cannot adapt to input data or preserve
the original semantic structures well. To address this issue,
we propose a novel framework named Automated Graph
Contrastive Learning (AutoGCL) in this paper. Specifically,
AutoGCL employs a set of learnable graph view genera-
tors orchestrated by an auto augmentation strategy, where ev-
ery graph view generator learns a probability distribution of
graphs conditioned by the input. While the graph view gener-
ators in AutoGCL preserve the most representative structures
of the original graph in generation of every contrastive sam-
ple, the auto augmentation learns policies to introduce ade-
quate augmentation variances in the whole contrastive learn-
ing procedure. Furthermore, AutoGCL adopts a joint train-
ing strategy to train the learnable view generators, the graph
encoder, and the classifier in an end-to-end manner, result-
ing in topological heterogeneity yet semantic similarity in the
generation of contrastive samples. Extensive experiments on
semi-supervised learning, unsupervised learning, and transfer
learning demonstrate the superiority of our AutoGCL frame-
work over the state-of-the-arts in graph contrastive learning.
In addition, the visualization results further confirm that the
learnable view generators can deliver more compact and se-
mantically meaningful contrastive samples compared against
the existing view generation methods. Our code is available
at https://github.com/Somedaywilldo/AutoGCL.

Introduction
Graph neural networks (GNNs) (Kipf and Welling 2016a;
Veličković et al. 2017; Hamilton, Ying, and Leskovec 2017;
Xu et al. 2018) are gaining increasing attention in the realm
of graph representation learning. By generally following a
recursive neighborhood aggregation scheme, GNNs have
shown impressive representational power in various do-
mains, such as point clouds (Shi and Rajkumar 2020), social
networks (Fan et al. 2019), chemical analysis (De Cao and
Kipf 2018), and so on. Most of the existing GNN models
are trained in an end-to-end supervised fashion, which relies
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on a high volume of fine-annotated data. However, label-
ing graph data requests a huge amount of effort from pro-
fessional annotators with domain knowledge. To alleviate
this issue, GAE (Kipf and Welling 2016b) and GraphSAGE
(Hamilton, Ying, and Leskovec 2017) have been proposed to
exploit a naive unsupervised pretraining strategy that recon-
structs the vertex adjacency information. Some recent works
(Hu et al. 2019; You et al. 2020b) introduce self-supervised
pretraining strategies to GNNs which further improve the
generalization performance.

More recently, with developments of contrastive multi-
view learning in computer vision (Tian, Krishnan, and Isola
2019; He et al. 2020; Chen et al. 2020a) and natural lan-
guage processing (Logeswaran and Lee 2018; Yang et al.
2019), some self-supervised pretraining approaches perform
as good as (or even better than) supervised methods. In gen-
eral, contrastive methods generate training views using data
augmentations, where views of the same (positive pairs) in-
put are concentrated in the representation space with views
of different inputs (negative pairs) pushed apart. To work on
graphs, DGI (Veličković et al. 2018) has been proposed to
treat both graph-level and node-level representations of the
same graph as positive pairs, pursuing consistent representa-
tions from local and global features. CMRLG (Hassani and
Khasahmadi 2020) achieves a similar goal by grouping adja-
cency matrix (local features) and its diffusion matrix (global
features) as positive pairs. GCA (Zhu et al. 2020b) gener-
ates the positive view pairs through sub-graph sampling with
the structure priors with node attributes randomly masked.
GraphCL (You et al. 2020a) offers even more strategies for
augmentations, such as node dropping and edge perturba-
tion. While above attempts incorporate contrastive learning
into graphs, they usually fail to generate views with respect
to the semantic of original graphs or adapt augmentation
policies to specific graph learning tasks.

Blessed by the invariance of image semantics under var-
ious transformation, image data augmentation has been
widely used (Cubuk et al. 2019) to generative contrastive
views. However, the use of graph data augmentation might
be ineffective here, as transformations on a graph might
severely disrupt its semantics and properties for learning. In
the meanwhile, InfoMin (Tian et al. 2020) improves con-
trastive learning for vision tasks and proposes to replace im-
age data augmentation with a flow-based generative model
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Property CMRLG GRACE GraphCL GCA JOAO AD-GCL Ours
Topological ✓ ✓ ✓ ✓ ✓ ✓ ✓

Node Feature - ✓ ✓ ✓ ✓ - ✓
Label-preserving - - - - - - ✓

Adaptive - - - ✓ ✓ ✓ ✓
Variance - ✓ ✓ ✓ ✓ ✓ ✓

Differentiable - - - - - ✓ ✓
Efficient BP - - - - - ✓ ✓

Table 1: An overview of graph augmentation methods.

for contrastive views generation. Thus, learning a probabil-
ity distribution of contrastive views conditioned by an input
graph might be an alternative to simple data augmentation
for graph contrastive learning but still requests non-trivial
efforts, as the performance and scalability of common graph
generative models are poor in real-world scenarios.

In this work, we propose a learnable graph view genera-
tion method, namely AutoGCL, to address above issues via
learning a probability distribution over node-level augmen-
tations. While the conventional pre-defined view generation
methods, such as random dropout or graph node masking,
may inevitably change the semantic labels of graphs and fi-
nally hurt contrastive learning, AutoGCL adapts to the input
graph such that it can well preserve the semantic labels of the
graph. In addition, thanks to the gumbel-softmax trick (Jang,
Gu, and Poole 2016), AutoGCL is end-to-end differentiable
yet providing sufficient variances for contrastive samples
generation. We further propose a joint training strategy to
train the learnable view generators, the graph encoders, and
the classifier in an end-to-end manner. The strategy includes
the view similarity loss, the contrastive loss, and the classifi-
cation loss. It makes the proposed view generators generate
augmented graphs that have similar semantic information
but with different topological properties. In Table 1, we sum-
marize the properties of existing graph augmentation meth-
ods, where AutoGCL dominates in the comparisons.

We conduct extensive graph classification experiments
using semi-supervised learning, unsupervised learning, and
transfer learning tasks to evaluate the effectiveness of Auto-
GCL. The results show that AutoGCL improves the state-of-
the-art graph contrastive learning performances on most of
the datasets. In addition, we visualize the generated graphs
on MNIST-Superpixel dataset (Monti et al. 2017) and reveal
that AutoGCL could better preserve semantic structures of
the input data than existing pre-defined view generators. Our
contributions can be summarized as follows.

• We propose a graph contrastive learning framework with
learnable graph view generators embedded into an auto
augmentation strategy. To the best of our knowledge, this
is the first work to build learnable generative node-wise
augmentation policies for graph contrastive learning.

• We propose a joint training strategy for training the graph
view generators, the graph encoder, and the graph classi-
fier under the context of graph contrastive learning in an
end-to-end manner.

• We extensively evaluate the proposed method on a vari-
ety of graph classification datasets with semi-supervised,
unsupervised, and transfer learning settings. The t-SNE
and view visualization results also demonstrate the ef-
fectiveness of our method.

Related Work
Graph Neural Networks
Denote a graph as g = (V,E) where the node features
are xv for v ∈ V . In this paper, we focus on the graph
classification task using Graph Neural Networks (GNNs).
GNNs generate node-level embedding hv through aggre-
gating the node features xv of its neighbors. Each layer of
GNNs serves as an iteration of aggregation, such that the
node embedding after the k-th layers aggregates the infor-
mation within its k-hop neighborhood. The k-th layer of
GNNs can be formulated as

a(k)
v = AGGREGATE(k)({h(k−1)

u : u ∈ N (v)}) (1)

h(k)
v = COMBINE(k)(h(k−1)

v ,a(k)
v ) (2)

For the downstream tasks such as graph classification, the
graph-level representation zg is obtained via the READOUT
function and MLP layers as

F (g) = READOUT({h(k)
n : vn ∈ V}) (3)

zg = MLP(F (g)) (4)

In this work we follow the existing graph contrastive learn-
ing literature to employ two state-of-the-art GNNs, i.e., GIN
(Xu et al. 2018) and ResGCN (Chen, Bian, and Sun 2019),
as our backbone GNNs.

Pre-training Graph Neural Networks
Pre-training GNNs on graph datasets still remains a chal-
lenging task, since the semantics of graphs are not straight-
forward, and the annotation of graphs (proteins, chemicals,
etc.) usually requires professional domain knowledge. It is
very costly to collect large-scale and fine-annotated graph
datasets like ImageNet (2012). An alternative way is to
pre-train the GNNs in an unsupervised manner. The GAE
(2016b) first explored the unsupervised GNN pre-training
by reconstructing the graph topological structure. Graph-
SAGE (2017) proposed an inductive way of unsupervised
node embedding by learning the neighborhood aggregation
function. Pretrain-GNN (Hu et al. 2019) conducted the first
systematic large-scale investigation of strategies for pre-
training GNNs under the transfer learning setting. It pro-
posed self-supervised pre-training strategies to learn both
the local and global features of graphs. However, the benefits
of graph transfer learning may be limited and lead to nega-
tive transfer (Rosenstein et al. 2005), as the graphs from dif-
ferent domains actually differ a lot in their structures, scales
and node/edge attributes. Therefore, many of the following
works started to explore an alternative approach, i.e., the
contrastive learning, for GNNs pre-training.

Contrastive Learning
In recent years, contrastive learning (CL) has received con-
siderable attention among the self-supervised learning ap-
proaches, and a series of CL methods including SimCLR
(Chen et al. 2020a) and MoCo-v2 (Chen et al. 2020b) even
outperform supervised baselines. Through minimizing the
contrastive loss (2006), the views generated from the same
input (i.e., positive pairs) are pulled close in the represen-
tation space, while the views of different inputs (i.e., nega-
tive pairs) are pushed apart. Most of the existing CL meth-
ods (He et al. 2020; Zbontar et al. 2021; Chen et al. 2020a;
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Grill et al. 2020) generate views using data augmentation,
which is still challenging and under-explored for the graph
data. Instead of data augmentation, DGI (Veličković et al.
2018) treated the graph-level and node-level representations
of the same graph as positive view pairs. CMRLG (Hassani
and Khasahmadi 2020) achieved an analogical goal by treat-
ing the adjacency matrix and the diffusion matrix as posi-
tive pairs. More recently, GraphCL (You et al. 2020a) em-
ployed four types of graph augmentations, including node
dropping, edge perturbation, sub-graph sampling, and node
attribute masking, enabling the most diverse augmentations
by far for graph view generation. GCA (Zhu et al. 2020b)
used sub-graph sampling and node attribute masking as aug-
mentations and introduced a prior augmentation probability
based on the node centrality measures, enabling more adap-
tiveness than GraphCL (You et al. 2020a), but the prior is
not learnable.

Learnable Data Augmentation
As mentioned above, data augmentation is a significant com-
ponent of CL. The existing literature (Chen et al. 2020a;
You et al. 2020a) has revealed that the optimal augmen-
tation policies are task-dependent and the choice of aug-
mentations makes a considerable difference to the CL per-
formance. The researchers have explored to automatically
discover the optimal policy for image augmentations in the
computer vision field. For instance, AutoAugment (Cubuk
et al. 2019) firstly optimized the combination of augmen-
tation functions through reinforcement learning. Faster-AA
(Hataya et al. 2020) and DADA (Li et al. 2020) proposed a
differentiable augmentation optimization framework follow-
ing the DARTS (Liu, Simonyan, and Yang 2018) style.

However, the learnable data augmentation methods are
barely explored for CL until the InfoMin framework (Tian
et al. 2020), which claims that good views of CL should
maintain the label information as well as minimizing the
mutual information of positive view pairs. InfoMin employs
a flow-based generative model as the view generator for
data augmentation and trains the view generator in a semi-
supervised manner. However, transferring this idea to graph
is a non-trivial task since current graph generative models
are either of limited generation qualities (Kipf and Welling
2016b) or designed for specific tasks such as the molecular
data (De Cao and Kipf 2018; Madhawa et al. 2019; Wang
et al. 2021). To make graph augmentations adaptive to dif-
ferent tasks, JOAO (You et al. 2021) learns the sampling dis-
tribution of pre-defined augmentations in a Bayesian man-
ner, but the augmentations themselves are still not learn-
able. AD-GCL (Suresh et al. 2021) first proposed a learn-
able edge dropping augmentation and employs adversarial
training strategy, but node-level augmentations are not con-
sidered, and the strategy will not ensure to generate label-
preserving augmentations.

In this work we build a learnable graph view generator
that learns a probability distribution over the node-level aug-
mentations. Compared to the existing graph CL methods,
our method well preserves the semantic structures of origi-
nal graphs. Moreover, it is end-to-end differentiable and can
be efficiently trained.

Methodology
What Makes a Good Graph View Generator?
Our goal is to design a learnable graph view generator that
learns to generate the augmented graph view in data-driven
manner. Although various graph data augmentation methods
have been proposed, there is less discussion on what makes
a good graph view generator? From our perspective, an ideal
graph view generator for data augmentation and contrastive
learning should satisfy the following properties: (1) It sup-
ports both the augmentations of the graph topology and the
node feature. (2) It is label-preserving, i.e., the augmented
graph should maintain the semantic information in the orig-
inal graph. (3) It is adaptive to different data distributions
and scalable to large graphs. (4) It provides sufficient vari-
ances for contrastive multi-view pre-training. (5) It is end-
to-end differentiable and efficient enough for fast gradient
computation via back-propagation (BP).

Here we provide an overview of the augmentation meth-
ods proposed in existing literature of graph contrastive learn-
ing in Table 1. CMRLG (Hassani and Khasahmadi 2020) ap-
plies diffusion kernel to get different topological structures.
GRACE (Zhu et al. 2020a) uses random edge dropping and
node attribute masking. GCA (Zhu et al. 2020b) uses node
dropping and node attribute masking along with a structural
prior. GraphCL (You et al. 2020a) proposes the most flex-
ible set of graph data augmentations so far, including node
dropping, edge perturbation, sub-graph, and attribute mask-
ing. We provide a detailed ablation study and analysis of
GraphCL in the supplementary. JOAO (You et al. 2021) op-
timizes the augmentation sampling policy of GraphCL in a
Bayesian manner. AD-GCL (Suresh et al. 2021) designs a
learnable edge dropping augmentation.

In this work, we propose a learnable view generator to ad-
dress all the above issues. Our view generator includes both
augmentations of node dropping and attribute masking, but
it is much more flexible since both two augmentations can
be simultaneously employed in a node-wise manner, with-
out the need of tuning the “aug ratio”. Besides the concern
of model performance, another reason for not incorporating
edge perturbation in our view generator is, the generation of
edges through the learnable methods (e.g., VGAE (Kipf and
Welling 2016b)) requires to predict the full adjacency matrix
that contains O(N2) elements, which is a heavy burden for
back-propagation when dealing with large-scale graphs.

Learnable Graph View Generator
Fig. 1 illustrates the scheme of our proposed learnable graph
view generator. We use GIN (Xu et al. 2018) layers to get
the node embedding from the node attribute. For each node,
we use the embedded node feature to predict the probability
of selecting a certain augment operation. The augmentation
pool for each node is drop, keep, and mask. We employ the
gumbel-softamx (Jang, Gu, and Poole 2016) to sample from
these probabilities then assign an augmentation operation to
each node. Formally, if we use k GIN layers as the embed-
ding layer, we denote h(k)

v as the hidden state of node v at
the k-th layer and a

(k)
v as the embedding of node v after

the k-th layer. For node v, we have the node feature xv , the
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Figure 1: The architecture of our learnable graph view gener-
ator. The GNN layers embed the original graph to generate a
distribution for each node. The augmentation choice of each
node is sampled from it using the gumbel-softmax.

augmentation choice fv , and the function Aug(x, f) for ap-
plying the augmentation. Then the augmented feature x

′

v of
node v is obtained via

h(k−1)
v = COMBINE(k)(h(k−2)

v ,a(k−1)
v ) (5)

a(k)
v = AGGREGATE(k)({h(k−1)

u : u ∈ N (v)}) (6)

fv = GumbelSoftmax(a(k)
v ) (7)

x
′
v = Aug(xv, fv) (8)

The dimension of the last layer k is set as the same num-
ber of possible augmentations for each node. a(k)

v denotes
the probability distribution for selecting each kind of aug-
mentation. fv is a one-hot vector sampled from this distri-
bution via gumbel-softmax and it is differentiable due to the
reparameterization trick. The augmentation applying func-
tion Aug(xv, fv) combines the node attribute xv and fv us-
ing differentiable operations (e.g. multiplication), so the gra-
dients of the weights of the view generator are kept in the
augmented node features and can be computed using back-
propagation. For the augmented graph, the edge table is up-
dated using fv for all v ∈ V , where the edges connected to
any dropped nodes are removed. As the edge table is only
the guidance for node feature aggregation and it does not
participate in the gradient computation, it does not need to
be updated in a differentiable manner. Therefore, our view
generator is end-to-end differentiable. The GIN embedding
layers and the gumbel-softmax can be efficiently scaled up
for larger graph datasets and more augmentation choices.

Contrastive Pre-training Strategy
Since the contrastive learning requires multiple views to
form a positive view pair, we have two view generators and
one classifier for our framework. According to InfoMin prin-
ciple (Tian et al. 2020), a good positive view pair for con-
trastive learning should maximize the label-related informa-
tion as well as minimizing the mutual information (similar-
ity) between them. To achieve that, our framework uses two
separate graph view generators and trains them and the clas-
sifier in a joint manner.

Loss Function Definition Here we define three loss func-
tions, contrastive loss Lcl, similarity loss Lsim, and classifi-
cation loss Lcls. For contrastive loss, we follow the previous
works (Chen et al. 2020a; You et al. 2020a) and use the nor-
malized temperature-scaled cross entropy loss (NT-XEnt)

(Sohn 2016). Define the similarity function sim(z1, z2) as

sim(z1, z2) =
z1 · z2

∥z1∥2 · ∥z2∥2
(9)

Suppose we have a data batch made up of N graphs. We
pass the batch to the two view generators to obtain 2N graph
views. We regard the two augmented views from the same
input graph as the positive view pair. We use 1[k ̸=i] ∈ {0, 1}
to denote the indicator function. We denote the contrastive
loss function for a positive pair of samples (i, j) as ℓ(i, j),
the contrastive loss of this data batch as Lcl, the temperature
parameter as τ , then we have

ℓ(i,j) = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(10)

Lcl =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)] (11)

The similarity loss is used to minimize the mutual informa-
tion between the views generated by the two view genera-
tors. During the view generation process, we have a sampled
state matrix S indicting each node’s corresponding augmen-
tation operation (see Fig. 1). For a graph G, we denote the
sampled augmentation choice matrix of each view generator
as A1, A2, then we formulate the similarity loss Lsim as

Lsim = sim(A1, A2) (12)

Finally, for the classification loss, we directly use the cross
entropy loss (ℓcls). For a graph sample g with class label y,
we denote the augmented view as g1 and g2 and the classifier
as F . Then the classification loss Lcls is formulated as

Lcls = ℓcls(F (g), y) + ℓcls(F (g1), y) + ℓcls(F (g2), y) (13)

Lcls is employed in the semi-supervised pre-training task to
encourage the view generator to generate label-preserving
augmentations.

Naive Training Strategy For unsupervised learning and
transfer learning tasks, we use a naive training strategy
(naive-strategy). Since we do not know the label in the pre-
training stage, the Lsim is not used because it does not make
sense to just encourage the views to be different without
keeping the label-related information. This could lead to
generating useless or even harmful view samples. We just
train the view generators and the classifier jointly to mini-
mize the Lcl in the pre-training stage.

Also, we note that the quality of the generated views will
not be as good as the original data. During the Lcl mini-
mization, instead of just minimizing the Lcl between two
augmented views like GraphCL (You et al. 2020a), we also
make use of the original data. By pulling the original data
and the augmented views close in the embedding space, the
view generator are encouraged to preserve the label-related
information. The details are described in Algorithm 1.

Joint Training Strategy For semi-supervised learning
tasks, we proposed a joint training strategy, performs con-
trastive training and supervised training alternately. This
strategy generates label-preserving augmentation and out-
performs the naive-strategy. During the unsupervised train-
ing stage, we fix the view generators, and train the classifer
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Figure 2: The proposed AutoGCL framework is composed of three parts: (1) two view generators that generate different views
of the original graph, (2) a graph encoder that extracts the features of graphs and (3) a classifier that provides the graph outputs.

Algorithm 1: Naive training strategy (naive-strategy).
1: Initialize weights of G1, G2, F .
2: while not reached maximum epochs do
3: for mini-batch x from unlabeled data do
4: Get augmentation x1 = G1(x), x2 = G2(x)
5: Sample two views v1, v2 from {x, x1, x2}
6: L = Lcl(v1, v2)
7: Update the weights of G1, G2, F to minimize L
8: while not reached maximum epochs do
9: for mini-batch x from labeled data do

10: L = Lcls(x)
11: Update the weights of F to minimize L

Algorithm 2: Joint training strategy (joint-strategy).
1: Initialize weights of G1, G2, F .
2: while not reached maximum epochs do
3: for mini-batch x from unlabeled data do
4: Fix the weights of G1, G2

5: Get augmentation x1 = G1(x), x2 = G2(x)
6: Sample two views v1, v2 from {x, x1, x2}
7: L = Lcl(v1, v2)
8: Update the weights of F to minimize L
9: for mini-batch x from labeled data do

10: Get augmentation x1 = G1(x), x2 = G2(x)
11: L = Lcls(x, x1, x2) + λ · Lsim(x1, x2)
12: Update the weights of G1, G2, F to minimize L

by contrastive learning using unlabeled data. During the su-
pervised training stage, we jointly train the view generator
with the classifier using labeled data. By simultaneously op-
timizing Lsim and Lcls, the two view generators are encour-
aged to generated label-preserving augmentations, yet being
different enough from each other. The unsupervised training
stage and supervised training stage are repeated alternately.
This is very different from previous graph contrastive learn-
ing methods. Previous work like GraphCL (2020a) use the
pre-training/fine-tuning strategy, which first minimizes the
contrastive loss (Lcl) until convergence using the unlabeled
data and then fine-tunes it with the labeled data.

However, we found that for graph contrastive learning,
the pre-training/fine-tuning strategy are more likely to cause
over-fitting in the fine-tuning stage. And minimizing the Lcl

too much may have negative effect for the fine-tuning stage.
We speculate that minimizing the Lcl too much will push
data points near the decision boundary to be too closed to
each other, thus become more difficult the classifer to sepa-
rate them. Because no matter how well we train the GNN
classifer, there are still mis-classified samples due to the
natural overlaps between the data distribution of different
classes. But in the contrastive pre-training state, the classifer
is not aware of whether the samples being pulled together
are really from the same class.

Therefore, we propose a new semi-supervised training
strategy, namely the joint-strategy by alternately minimiz-
ing the Lcl and Lcls + Lcls. Minimizing Lcls + Lcls is in-
spired by InfoMin (Tian et al. 2020), so as to make the two
view generator to keep label-related information while hav-
ing less mutual information. However, since we only have a
small portion of labeled data to train our view generator, it
is still beneficial to use the original data just like the naive-
strategy. Interestingly, since we need to minimize Lcls and
Lsim simultaneously, a weight λ can be applied to better bal-
ance the optimization, but actually we found setting λ = 1
works pretty well during the experiments. The detailed train-
ing strategy is described in Algorithm 2. And the overview
of our whole framework is shown in Fig. 2.

Experiment
Comparison with State-of-the-Art Methods
Unsupervised Learning For the unsupervised graph clas-
sification task, we contrastively train a representation model
using unlabeled data, then fix the representation model and
train the classifier using labeled data. Following GraphCL
(You et al. 2020a), we use a 5-layer GIN with a hidden size
of 128 as our representation model, and use an SVM as our
classifier. We train the GIN with a batch size of 128 and a
learning rate of 0.001. There are 30 epochs of contrastive
pre-training under the naive-strategy. We perform a 10-fold
cross validation on every dataset. For each fold, we employ
90% of the total data as the unlabeled data for contrastive
pre-training, and 10% as the labeled testing data. We repeat
every experiment for 5 times using different random seeds.

We compare with the kernel-based methods like graphlet
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Model MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B REDDIT-M-5K
GL 81.66±2.11 - - - - 65.87±0.98 77.34±0.18 41.01±0.17
WL 80.72±3.00 72.92±0.56 - 80.01±0.50 - 72.30±3.44 68.82±0.41 46.06±0.21

DGK 87.44±2.72 73.30±0.82 - 80.31±0.46 - 66.96±0.56 78.04±0.39 41.27±0.18
node2vec 72.63±10.20 57.49±3.57 - 54.89±1.61 - - - -
sub2vec 61.05±15.80 53.03±5.55 - 52.84±1.47 - 55.26±1.54 71.48±0.41 36.68±0.42

graph2vec 83.15±9.25 73.30±2.05 - 73.22±1.81 - 71.10±0.54 75.78±1.03 47.86±0.26
InfoGraph 89.01±1.13 74.44±0.31 72.85±1.78 76.20±1.06 70.65±1.13 73.03±0.87 82.50±1.42 53.46±1.03
GraphCL 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28
JOAOv2 - 71.25±0.85 66.91±1.75 72.99±0.75 70.40±2.21 71.60±0.86 78.35±1.38 45.57±2.86
AD-GCL - 73.59±0.65 74.49±0.52 69.67±0.51 73.32±0.61 71.57±1.01 85.52±0.79 53.00±0.82

Ours 88.64±1.08 75.80±0.36 77.57±0.60 82.00±0.29 70.12±0.68 73.30±0.40 88.58±1.49 56.75±0.18

Table 2: Comparison with the existing methods for unsupervised learning. The bold numbers represent the best performance
and the underlined numbers represent the second best performance.

Model BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE
No Pretrain 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4
Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9
AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2
GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44
JOAOv2 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27
AD-GCL 70.01±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 72.30±1.61 78.28±0.97 78.51±0.80
Ours 73.36±0.77 75.69±0.29 63.47±0.38 62.51±0.63 80.99±3.38 75.83±1.30 78.35±0.64 83.26±1.13

Table 3: Comparison with the existing methods for transfer learning. The bold numbers represent the best performance and the
underlined numbers represent the second best performance.

kernel (GL) (2009), Weisfeiler-Lehman sub-tree kernel
(WL) (2011) and deep graph kernel (DGK) (2015),
and other unsupervised graph representation methods like
node2vec (Grover and Leskovec 2016), sub2vec (Adhikari
et al. 2018), graph2vec (Narayanan et al. 2017) also the con-
trastive learning methods like InfoGraph (Sun et al. 2019),
GraphCL (You et al. 2020a), JOAO (You et al. 2021) and
AD-GCL (Suresh et al. 2021). Table 2 show the comparison
among different models for unsupervised learning. Our pro-
posed model achieves the best results on PROTEINS, NCI1,
IMDB-binary, and REDDIT-Multi-5K datasets and the sec-
ond best performances on MUTAG, DD, and REDDIT-
binary datasets, outperforming current state-of-the-art con-
trastive learning methods GraphCL, JOAO and AD-GCL.

Transfer Learning We also evaluate the transfer learn-
ing performance of the proposed method. A strong base-
line method for graph transfer learning is Pretrain-GNN
(Hu et al. 2019). The network backbone of Pretrain-GNN,
GraphCL, JOAO, AD-GCL and our method is a variant of
GIN (Xu et al. 2018), which incorporates the edge attribute.
We perform 100 epochs of supervised pre-training on the
pre-processed ChEMBL dataset ((Mayr et al. 2018; Gaulton
et al. 2012)), which contains 456K molecules with 1,310
kinds of diverse and extensive biochemical assays.

We perform 30 epochs of fine-tuning on the 8 chemistry
evaluation subsets. We use a hidden size of 300 for the clas-
sifier, a hidden size of 128 for the view generator. We train
the model using a batch size of 256 and a learning rate of
0.001. The results in Table 3 are the mean±std of the ROC-
AUC scores from 10 reps. Infomax, EdgePred, AttrMasking,
ContextPred are the manually designed pre-training strate-
gies from Pretrain-GNN (Hu et al. 2019).

Table 3 presents the comparison among different meth-

ods. Our proposed method achieves the best performance on
most dataset, such as BBBP, ClinTox, MUV, and BACE, and
compared with the current SoTA model AD-GCL (Suresh
et al. 2021), our method performs considerably better,
for example, on BACE dataset, the accuracy raises from
78.51±0.80 to 83.26±1.13. Considering all datasets, the av-
erage gain of using our proposed method is around 1.5%.
Interestingly, AttrMasking achieves the best performance on
Tox21 and ToxCast, which is slightly better than our method.
One possible reason is that attributes are important for clas-
sification in Tox21 and ToxCast datasets.

Semi-Supervised Learning We perform semi-supervised
graph classification task on TUDataset (Morris et al. 2020).
For our view generator, we use a 5-layer GIN with a hid-
den size of 128 as the embedding model. We use Res-
GCN (2019) with a hidden size of 128 as the classifier.
For GraphCL, we use the default augmentation policy ran-
dom4, which randomly selects two augmentations from
node dropout, edge perturbation, subgraph, and attribute
masking for every mini-batch. All augmentation ratios are
set to 0.2, which is also the default setting in GraphCL.

We employ a 10-fold cross validation on each dataset. For
each fold, we use 80% of the total data as the unlabeled data,
10% as labeled training data, and 10% as labeled testing
data. For the augmentation only (Aug Only) experiments,
we only perform 30 epochs of supervised training with aug-
mentations using labeled data. For the contrastive learning
experiments of GraphCL and our naive-strategy, we perform
30 epochs of contrastive pre-training followed by 30 epochs
of supervised training. For our joint-strategy, there is 30 joint
epochs of contrastive training and supervised training.

Table 4 compares the performances obtained by differ-
ent training strategies: augmentation only (Aug only), naive-
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Model PROTEINS DD NCI1 COLLAB GITHUB IMDB-B REDDIT-B REDDIT-M-5K
Full Data 78.25±1.61 80.73±3.78 83.65±1.16 83.44±0.77 66.89±1.04 76.60±4.20 89.95±2.06 55.59±2.24
10% Data 69.72±6.71 74.36±5.86 75.16±2.07 74.34±2.00 61.05±1.57 64.80±4.92 76.75±5.60 49.71±3.20
10% GCA 73.85±5.56 76.74±4.09 68.73±2.36 74.32±2.30 59.24±3.21 73.70±4.88 77.15±6.96 32.95±10.89
10% GraphCL Aug Only 70.71±5.63 76.48±4.12 70.97±2.08 73.56±2.52 59.80±1.94 71.10±5.11 76.45±4.83 47.33±4.02
10% GraphCL CL 74.21±4.50 76.65±5.12 73.16±2.90 75.50±2.15 63.51±1.02 68.10±5.15 78.05±2.65 48.09±1.74
10% JOAOv2 73.31±0.48 75.81±0.73 74.86±0.39 75.53±0.18 66.66±0.60 - 88.79±0.65 52.71±0.28
10% AD-GCL 73.96±0.47 77.91±0.73 75.18±0.31 75.82±0.26 - - 90.10±0.15 53.49±0.28
10% Our Aug Only 75.49±5.15 77.16±4.53 73.33±2.86 75.92±1.93 60.65±1.04 71.90±2.88 79.65±2.84 47.97±2.22
10% Our CL Naive 74.57±3.29 75.55±4.76 73.22±2.48 76.60±2.15 60.95±1.32 71.00±2.91 79.10±4.38 46.71±2.64
10% Our CL Joint (Lcls) 74.66±2.58 76.57±5.08 71.78±1.61 75.38±2.15 60.39±1.50 70.60±4.17 78.90±3.11 46.89±3.13
10% Our CL Joint (Lcls+Lsim) 75.12±3.35 76.23±3.57 72.55±2.72 75.60±2.08 60.18±1.75 71.70±3.86 79.25±2.88 47.51±2.51
10% Our CL Joint (Lcl +Lcls ) 74.75±3.35 76.82±3.85 73.07±2.31 76.18±2.46 61.75±1.30 71.50±5.32 78.35±4.21 47.73±2.69
10% Our CL Joint (Lcl +Lcls+Lsim) 75.65±2.40 77.50±4.41 73.75±2.25 77.16±1.48 62.46±1.51 71.90±4.79 79.80±3.47 49.91±2.70

Table 4: Comparison with existing methods and different strategies for semi-supervised learning. The bold numbers represent
the best performance and the underlined numbers represent the second best performance.

strategy (CL naive) and joint-strategy (CL joint). We also
conducted an ablation study of our joint loss function. The
proposed CL joint approach achieves relatively high accu-
racy on most datasets, e.g., on PROTEINS and COLLAB
datasets, using joint strategy obtains the best performance.
For other datasets, using joint strategy could also achieve
the second best performances. Looking at the comparison
among Aug only, CL naive and CL joint, CL joint is supe-
rior to the other two approaches, in particular to CL naive.

Effectiveness of Learnable View Generators
In this section, we demonstrate the superiority of learnable
graph augmentation policies over the fixed ones. Since the
graph datasets are usually difficult to be manually classi-
fied and visualized, we trained a view generator on MNIST-
Superpixel dataset (Monti et al. 2017) to verify that our
graph view generator is able to effectively capture the se-
mantic information in graphs than GraphCL (You et al.
2020a), since MNIST-Superpixel graphs have clear seman-
tics which does not require any domin knowledge. The visu-
alization result is shown in Fig. 3.

Here we jointly trained the view generators with the clas-
sifier until the test accuracy (evaluated on generated views)
reached 90%. Since our only topological augmentation is
node dropping. So we compared the view of GraphCL’s
node dropping augmentation, and use the default setting
aug ratio = 0.2. Fig. 3 shows that, our view generator are
more likely to keep key nodes in the original graph, preserv-
ing its semantic feature, yet providing enough variance for
contrastive learning. Details and more visualization exam-
ples are shown in the supplementary.

Analysis for Joint Training Strategy
We compared the naive-strategy with the joint-strategy. We
trained on COLLAB (2015) dataset, which have 5000 social
network graphs of 3 classes, the average nodes and edges are
74.49 and 2457.78. Here we use 5-layer GIN (Xu et al. 2018)
as the backbone for both the view generator and the classi-
fier. For naive-strategy, there is 30 epochs of contrastive pre-
train using 80% unlabeled data and 30% of fine-tuning using
10% of data. For joint-strategy, there is 30 epochs of joint
training. Our results show that the joint strategy consider-

Original Our Views GraphCL Views
Original Our Views GraphCL Views

Figure 3: View visualization on the MNIST-Superpixel
dataset. Redness reflects the magnitude of node attribute.

ably alleviate the over-fitting effect, and our label-preserving
view generator is very effective. We also visualize the learn-
ing curves and the process for learning the embedding for
each strategy using t-SNE (2008) in the supplementary. We
found that joint-strategy leads to better representation much
faster since labeled data is used for supervision, also this su-
pervision signal could benefit view generator learning.

Conclusion
In this paper, we presented a learnable data augmentation
approach to graph contrastive learning, where we employed
GIN to generate different views of the original graphs. To
preserve the semantic label of the input graph, we devel-
oped a joint learning strategy, which alternately optimizes
view generators, graph encoders and the classifier. We also
conducted extensive experiments on a number of datasets
and tasks, such as semi-supervised learning, unsupervised
learning and transfer learning, where results demonstrate the
advantage of our proposed method outperforming counter-
parts on most datasets and tasks. In addition, we visualized
the generated graph views, which could preserve discrim-
inative structures of input graphs, benefiting classification.
Finally, the t-SNE visualization illustrated that the proposed
joint training strategy could be a better choice for semi-
supervised graph representation learning.
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